Design of a Low-Voltage High-Speed Switched-Capacitor Filters Using Improved Auto Zeroed Integrator

2008 ◽  
Vol 8 (9) ◽  
pp. 1771-1775 ◽  
Author(s):  
M. Rashtian ◽  
O. Hashemipou ◽  
K. Navi
Author(s):  
A. S. R. Murthy ◽  
Sridhar T.

<p>In various VLSI based digital systems, on-chip interconnects have become the system bottleneck in state-of-the-art chips, limiting the performance of high-speed clock distributions and data communication devices in terms of propagation delay and power consumption. Increasing power requirements and power distribution to multi-core architectures is also posing a challenge to power distribution networks in the integrated circuits. Clock distribution networks for the switched capacitor converters becomes a non-trivial task and the increased interconnect lengths cause clock degradation and power dissipation. Therefore, this paper introduce low swing signaling schemes to decrease delay and power consumption. A comparative study presented of low voltage signaling schemes in terms of delay, power consumption and power delay product. Here, we have presented a power efficient signaling topology for driving the clocks to higher interconnect lengths.</p>


Author(s):  
R. Ghasemi ◽  
H. Charkhkar ◽  
A. As-adi ◽  
R. Lotfi ◽  
K. Mafinejad

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 762
Author(s):  
Stefano D’Amico ◽  
Stefano Marinaci ◽  
Peter Pridnig ◽  
Marco Bresciani

An architecture of a switched-capacitor integrator that includes a charge buffer operating in an open-loop is hereby proposed. As for the switched-capacitor filters, the gain of the proposed integrator, which is given by the input/output capacitor ratio, ensures desensitization to process, voltage, and temperature variations. The proposed circuit is suitable for low voltage supplies. It enables a significant power saving compared to a traditional switched-capacitor integrator. This was demonstrated through an analytical comparison between the proposed integrator and a traditional switched-capacitor integrator. The mathematical results were supported and verified by simulations performed on a circuit prototype designed in 16 nm finFET technology with 0.95 V supply. The proposed switched-capacitor integrator consumes 76 µW, resulting in more than twice the efficiency for the traditional closed-loop switched-capacitor filter as an input voltage equal to 31.25 mV at 7 ns clock period is considered. The comparison of architectures was led among the proposed integrator and the state-of-the-art technology in terms of the figure of merit.


Nanophotonics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1765-1773
Author(s):  
Yi Zhang ◽  
Jianfeng Gao ◽  
Senbiao Qin ◽  
Ming Cheng ◽  
Kang Wang ◽  
...  

Abstract We design and demonstrate an asymmetric Ge/SiGe coupled quantum well (CQW) waveguide modulator for both intensity and phase modulation with a low bias voltage in silicon photonic integration. The asymmetric CQWs consisting of two quantum wells with different widths are employed as the active region to enhance the electro-optical characteristics of the device by controlling the coupling of the wave functions. The fabricated device can realize 5 dB extinction ratio at 1446 nm and 1.4 × 10−3 electrorefractive index variation at 1530 nm with the associated modulation efficiency V π L π of 0.055 V cm under 1 V reverse bias. The 3 dB bandwidth for high frequency response is 27 GHz under 1 V bias and the energy consumption per bit is less than 100 fJ/bit. The proposed device offers a pathway towards a low voltage, low energy consumption, high speed and compact modulator for silicon photonic integrated devices, as well as opens possibilities for achieving advanced modulation format in a more compact and simple frame.


Sign in / Sign up

Export Citation Format

Share Document