scholarly journals Power Efficient Clock Distribuition for Switched Capacitor DC-DC Converters

Author(s):  
A. S. R. Murthy ◽  
Sridhar T.

<p>In various VLSI based digital systems, on-chip interconnects have become the system bottleneck in state-of-the-art chips, limiting the performance of high-speed clock distributions and data communication devices in terms of propagation delay and power consumption. Increasing power requirements and power distribution to multi-core architectures is also posing a challenge to power distribution networks in the integrated circuits. Clock distribution networks for the switched capacitor converters becomes a non-trivial task and the increased interconnect lengths cause clock degradation and power dissipation. Therefore, this paper introduce low swing signaling schemes to decrease delay and power consumption. A comparative study presented of low voltage signaling schemes in terms of delay, power consumption and power delay product. Here, we have presented a power efficient signaling topology for driving the clocks to higher interconnect lengths.</p>

The Exact Speculative Carry Look Ahead Adder using the Modified-GDI (Modified-Gate Diffusion Input) is suggested in this work. The delay, area and power tradeoff plays a vital role in VLSI. We already know that designs which are of CMOS style occupy more space may consume more power consumption. The switching behavior of the circuit cause the heating up of integrated circuits affects the working conditions of the functional unit. The adders are the main parts of several applications such as microprocessors, microcontrollers and digital signal processors and also in real time applications. Hence it is important to minimize the adder blocks to design a perfect processor. This work is proposed on a 16 bit carry look ahead adder is designed by using MGDI gate and 4T XOR gates and a speculator blocks. The proposed MGDI carry Look Ahead adder occupies 68% less area and the power consumption and the propagation delay also drastically reduces when compared to the conventional carry Look Ahead adder why because the number transistors drastically reduces from 1448 (Conventional) to 456 (Proposed CLA). The simulation results of the proposed design implemented in Xilinx.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Electrician ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 33
Author(s):  
Osea Zebua ◽  
Noer Soedjarwanto ◽  
Jemi Anggara

Intisari — Stabilitas tegangan telah menjadi perhatian yang penting dalam operasi jaringan distribusi tenaga listrik. Ketidakstabilan tegangan dapat menyebabkan kerusakan pada peralatan-peralatan listrik bila terjadi dalam waktu yang lama. Makalah ini bertujuan untuk merancang dan membuat peralatan deteksi stabilitas tegangan jangka panjang pada jaringan tegangan rendah. Sensor tegangan dan sensor arus digunakan untuk memperoleh data tegangan dan arus. Mikrokontroler Arduino digunakan untuk memproses perhitungan deteksi stabilitas tegangan jangka panjang dari data tegangan yang diperoleh dari sensor. Hasil deteksi kondisi stabilitas tegangan ditampilkan dengan indikator lampu led. Hasil pengujian pada jaringan distribusi tegangan rendah tiga fasa menunjukkan bahwa peralatan dapat mendeteksi gangguan stabilitas tegangan jangka panjang secara online dan dinamis.Kata kunci — Deteksi, stabilitas tegangan jangka panjang, jaringan distribusi tegangan rendah. Abstract — Voltage stability has become important concern in the operation of electric power distribution networks. Voltage instability can cause damage to electrical equipments if it occurs for a long time. This paper aims to design and build long-term voltage stability detection equipment on low-voltage network. Voltage sensors and current sensors are used to obtain voltage and current data. The Arduino microcontroller is used to process calculation of long-term voltage stability detection from data obtained from the sensors. The results of detection of voltage stability conditions are displayed with the LED indicators. Test result on three-phase low-voltage distribution network shows that equipment can detect long–term voltage stability disturbance online and dynamically.Keywords— Detection, long-term voltage stability, low-voltage distribution network.


Author(s):  
Satya PRAKASH ◽  
Manoj HANS ◽  
Vikas THORAT

The power distribution network has grown complex and vulnerable as it increases its demand. The system's reliability has become a prominent factor for the end-users, although the continuity of supply in the distribution network still remains a challenge. In order to achieve the same distribution, automation came into the picture. The term “Distribution Automation” usually refers to an advanced switching system, which works as a subsystem of the existing network. The purpose of the subsystem is to offer real-time observation and control in distribution networks and electricity market operations. Consequently, the development of an autonomous system for isolating failures and restoring power for the distribution of LV (low voltage)/MV (medium voltage) can be an attractive solution for improving energy facilities' reliability. Advanced management techniques are devices and algorithms used to analyze, diagnose, and predict conditions in a distribution network, as well as to identify and take appropriate corrective actions to eliminate, mitigate, and prevent power outages and power quality problems. To demonstrate the model, we used a PIC16F877, CT microcontroller, and a power supply unit.


2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Raton Kumar Nondy ◽  
Md. Abul Bashar ◽  
Prema Nondy ◽  
M. Hazrat Ali

The conventional power frequency (50 or 60 Hz) transformers are economical, highly reliable and quite efficient but they suffer with certain drawbacks like sensitive to harmonics, voltage drop under load, no protection from system disruptions and overloads, poor performance under dc offset load unbalances and no scope to improve power factor. These transformers with copper wound wires on iron cores are unable to respond to control signals as power generations become distributed and intermittent. So, the need of electronic based regulated power supply with software based remote intelligence has become essential. Also, to easily connect the new energy sources to the grid and to improve the power quality by harmonic filtering, voltage sag correction and highly dynamic control of the power flow, a new type of transformer based on power electronics, known as SST has been introduced. The SST realizes voltage transformation, galvanic isolation, power quality improvements such as instantaneous voltage regulation, voltage sag compensation and power factor correction. It is a collection of high-powered semiconductor components, high frequency power transformer and control circuitry which is used to provide a high level of flexible control to power distribution networks. The SST is a high frequency switched Power Electronic Devices (PEDs) based transformer with high controllability that enables flexible connectivity between existing medium voltage power distribution network, low voltage AC residential system and envisioned DC residential system. In this paper a systematic constructional detail of a SST with a power rating of 2 kVA, operating frequency of 20 kHz and voltage rating of 600/60 V as a scaled-down prototype used for power converter topologies is presented. The design is simple and it avoids the difficulty of choosing massive amounts of empirical parameters.


2021 ◽  
Author(s):  
Mark Dong ◽  
Genevieve Clark ◽  
Andrew J. Leenheer ◽  
Matthew Zimmermann ◽  
Daniel Dominguez ◽  
...  

AbstractRecent advances in photonic integrated circuits have enabled a new generation of programmable Mach–Zehnder meshes (MZMs) realized by using cascaded Mach–Zehnder interferometers capable of universal linear-optical transformations on N input/output optical modes. MZMs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, MZM implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here we introduce a large-scale MZM platform made in a 200 mm complementary metal–oxide–semiconductor foundry, which uses aluminium nitride piezo-optomechanical actuators coupled to silicon nitride waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible–near-infrared wavelengths. Moreover, the vanishingly low hold-power consumption of the piezo-actuators enables these photonic integrated circuits to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.


Sign in / Sign up

Export Citation Format

Share Document