Water Yield Product 1km Grid Yearly Dataset in National Barrier Zone of China

GCdataPR ◽  
2020 ◽  
Author(s):  
Lichang YIN ◽  
Xiaofeng* WANG ◽  
Xiaofeng* WANG ◽  
Yi WANG
Keyword(s):  
2017 ◽  
Vol 19 (2) ◽  
pp. 157
Author(s):  
Nunung Puji Nugroho

<p class="JudulABSInd"><strong>ABSTRAK</strong></p><p class="abstrak">Informasi hasil air dari suatu ekosistem sangat penting dalam pengelolaan sumber daya air. Dalam perencanaan kegiatan konservasi sumber daya air, informasi sebaran spasial hasil air diperlukan untuk menentukan prioritas wilayah terkait dengan alokasi anggaran. Hasil air dari suatu ekosistem atau daerah aliran sungai (DAS) dapat diestimasi dengan menggunakan model hidrologi. Penelitian ini bertujuan untuk mendapatkan informasi tentang hasil air, baik besaran maupun sebaran spasialnya, dari daerah tangkapan air (DTA) Danau Rawa Pening. Hasil air dari lokasi penelitian dihitung dengan menggunakan model hasil air pada InVEST (<em>the Integrated Valuation of Ecosystem Services and Tradeoffs</em>), yang didasarkan pada pendekatan neraca air. Hasil perhitungan menunjukkan bahwa volume hasil air di DTA Danau Rawa Pening pada tahun 2015 adalah sekitar 337 juta m<sup>3</sup>. SubDAS Galeh, sebagai subDAS terluas, merupakan penghasil air terbesar (72,4 juta m<sup>3</sup>) diikuti oleh subDAS Sraten (66,8 juta m<sup>3</sup>) dan Parat (62,4 juta m<sup>3</sup>). Secara spasial, hasil air di lokasi kajian mempunyai nilai antara 0 hingga 29.634,19 m<sup>3</sup>/ha. Wilayah hulu dan tengah subDAS Sraten secara umum mempunyai hasil air yang lebih tinggi, sedangkan wilayah danau dan sekitarnya serta hulu subDAS Galeh mempunyai hasil air yang lebih rendah dibandingkan dengan wilayah lainnya. Wilayah dengan hasil air tinggi dapat diprioritaskan dalam kegiatan konservasi sumber daya air untuk mendukung pasokan air ke Danau Rawa Pening.</p><p><strong><em>Kata kunci</em></strong><em>: hasil air, daerah tangkapan air, model InVEST, Danau Rawa Pening</em><em></em></p><p class="judulABS"><strong>ABSTRACT</strong></p><p class="Abstrakeng">Accurate information on water yield from an ecosystem is very important in the management of water resources. In the planning of water resources conservation activities, the information on the spatial distribution of water yield is needed to determine regional priorities related to budget allocations. The water yield from an ecosystem or watershed can be estimated using a hydrological model. This study aimed to obtain information about the water yield, both the magnitude and their spatial distribution, from the catchment areas of Lake Rawa Pening. The water yield from the study area was calculated using the water yield model in InVEST (the Integrated Valuation of Ecosystem Services and Tradeoffs), which based on the water balance approach. The results indicated that the volume of water yield in Lake Rawa Pening for 2015 is approximately 337 million m<sup>3</sup>. Galeh subwatershed, as the largest subwatershed, is the largest water producer (72.4 million m<sup>3</sup>), followed by Sraten subwatershed (66.8 million m<sup>3</sup>) and Parat subwatershed (62.4 million m<sup>3</sup>). Spatially, the water yield at the study site has a value between 0 to 29,634.19 m<sup>3</sup>/ha. Upstream and middle areas of Sraten subwatershed generally have higher water yield, while the lake and its surrounding areas as well as the upstream of Galeh subwatershed have lower water yield compared to other regions. The regions with high water yield can be prioritized in water resource conservation activities to support the supply of water to Lake Rawa Pening.</p><p><strong><em>Keywords</em></strong><em>: water yield, catchment areas, InVEST model, Lake Rawa Pening</em><em></em></p>


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2072
Author(s):  
Ying Fang ◽  
Tianlin Zhai ◽  
Xiaodong Zhao ◽  
Kun Chen ◽  
Baishu Guo ◽  
...  

Ecosystem services are characterized by region and scale, and contribute to human welfare. Taking Yantai city, a typical bay city in China, as the example, its three representative ecosystem services: food supply (FS), carbon sequestration (CS) and water yield (WY) were chosen as study targets. Based on analyzation of six different aspects of the supply and variation characteristic of demand, this study tried to propose advices for comprehensive improvement of ecosystem services for spatial optimization. The results showed that: (1) ecosystem services supply was strong in central and southern areas of Yantai, while the northern coastal areas were relatively weak; (2) synergistic relationships were found of FS-CS, FS-WY and CS-WY both in 2009 and 2015, with the strongest one for FS-WY. Additionally, in the synergistic relationships, each pair of ecosystem services was dominated by one ecosystem service; (3) most of the three pairs of synergistic relationships had the tendency to strengthen with larger scales; (4) four ecosystem demands changing areas were observed and comprehensive improvement suggestions for them were proposed. This work provides a new attempt to improve ecosystem services based on its supply-demand relationship, which will give a baseline reference for related studies in Yantai city, as well as other similar bay cities.


2021 ◽  
Vol 10 (7) ◽  
pp. 466
Author(s):  
Wenbo Mo ◽  
Yunlin Zhao ◽  
Nan Yang ◽  
Zhenggang Xu ◽  
Weiping Zhao ◽  
...  

Spatial and quantitative assessments of water yield services in watershed ecosystems are necessary for water resource management and improved water ecological protection. In this study, we used the InVEST model to estimate regional water yield in the Dongjiang Lake Basin in China. Moreover, we designed six scenarios to explore the impacts of climate and land use/land cover (LULC) changes on regional water yield and quantitatively determined the dominant mechanisms of water yield services. The results are expected to provide an important theoretical reference for future spatial planning and improvements of ecological service functions at the water source site. We found that (1) under the time series analysis, the water yield changes of the Dongjiang Lake Basin showed an initial decrease followed by an increase. Spatially, water yield also decreased from the lake area to the surrounding region. (2) Climate change exerted a more significant impact on water yield changes, contributing more than 98.26% to the water yield variability in the basin. In contrast, LULC had a much smaller influence, contributing only 1.74 %. (3) The spatial distribution pattern of water yield services in the watershed was more vulnerable to LULC changes. In particular, the expansion of built-up land is expected to increase the depth of regional water yield and alter its distribution, but it also increases the risk of waterlogging. Therefore, future development in the basin must consider the protection of ecological spaces and maintain the stability of the regional water yield function.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


2021 ◽  
Vol 434 ◽  
pp. 106419
Author(s):  
E. Horstmann ◽  
Y. Tomonaga ◽  
M.S. Brennwald ◽  
M. Schmidt ◽  
V. Liebetrau ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 1375
Author(s):  
Liang-Jie Wang ◽  
Shuai Ma ◽  
Jiang Jiang ◽  
Yu-Guo Zhao ◽  
Jin-Chi Zhang

Understanding the spatiotemporal heterogeneity of ecosystem services (ESs) and their drivers in mountainous areas is important for sustainable ecosystem management. However, the effective construction of landscape heterogeneous units (LHUs) to reflect the spatial characteristics of ESs remains to be studied. The southern hill and mountain belt (SHMB) is a typical mountainous region in China, with undulating terrain and obvious spatial heterogeneity of ESs, and was selected as the study area. In this study, we used the fuzzy k-means (FKM) algorithm to establish LHUs. Three major ESs (water yield, net primary productivity (NPP), and soil conservation) in 2000 and 2015 were quantified using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and Carnegie Ames-Stanford approach (CASA) model. Then, we explored the spatial variation in ESs along terrain gradients and LHUs. Correlation analysis was used to analyze the driving factors of ESs in each terrain region and LHU. The results showed that altitude and terrain niche increased along LHUs. Water yield and soil conservation increased from 696.86 mm and 3920.19 t/km2 to 1061.12 mm and 5117.90 t/km2, respectively, while NPP decreased from 666.95 gC/m2 to 648.86 gC/m2. The ESs in different LHUs differed greatly. ESs increased first and then decreased along LHUs in 2000. In 2015, water yield decreased along LHUs, while NPP and soil conservation showed a fluctuating trend. Water yield was mainly affected by precipitation, temperature and NDVI were the main drivers of NPP, and soil conservation was greatly affected by precipitation and slope. The driving factors of the same ES were different in different terrain areas and LHUs. The variation and driving factors of ESs in LHUs were similar to some terrain gradients. To some extent, LHUs can represent multiple terrain features. This study can provide important support for mountain ecosystem zoning management and decision-making.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 582
Author(s):  
Peng Tian ◽  
Jialin Li ◽  
Luodan Cao ◽  
Ruiliang Pu ◽  
Hongbo Gong ◽  
...  

Ecosystem services (ESs) is a term used to describe the foundations of the well-being of human society, and several relevant studies have been carried out in this area. However, given the fact that the complex trade-offs/synergy relationships of ESs are a challenging area, studies on matching mechanisms for ES supply and demand are still rare. In this study, using the InVEST model, ArcGIS, and other professional tools, we first mapped and quantitatively evaluated the supply and demand of five ES types (water yield, soil conservation, carbon retention, food supply, and leisure and entertainment) in Hangzhou, China, based on land use, meteorology, soil, and socio-economic data. Then, we analyzed the matching characteristics between the supply and demand of these ESs and analyzed the complex trade-offs and synergy between the supply and demand of ESs and factors affecting ESs. The results of this analysis indicate that although the ES supply and demand of carbon retention tended to be out of balance (supply was less than demand), the supply and demand of the other four ES types (i.e., water yield, soil conservation, food supply, and leisure and entertainment) were in balance (supply exceeded demand). Finally, the spatial heterogeneity of the supply and demand of ESs in Hangzhou was significant, especially in urban areas in the northeast and mountainous areas in the southwest. The supply of ESs was based on trade-offs, whereas the demand of ESs was based on synergy. Our results further show that the supply and demand of ESs in the urban area in Hangzhou were out of balance, whereas the supply and demand of ESs in the western region were coordinated. Therefore, the linkage of ES flows between this urban area and the western region should be strengthened. This innovative study could provide useful information for regional land use planning and environmental protection.


2021 ◽  
Vol 13 (4) ◽  
pp. 566
Author(s):  
Xiangkun Qi ◽  
Qian Li ◽  
Yuemin Yue ◽  
Chujie Liao ◽  
Lu Zhai ◽  
...  

Under the transformation from over-cultivation to ecological protection in China’s karst, how human activities affect ecosystem services should be studied. This study combined satellite imagery and ecosystem models (Carnegie-Ames-Stanford Approach (CASA), Revised Universal Soil Loss Equation (RUSLE) and Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)) to evaluate primary ecosystem services (net ecosystem productivity (NEP), soil conservation and water yield) in a typical karst region (Huanjiang County). The relationships between human activities and ecosystem services were also examined. NEP increased from 441.7 g C/m2/yr in 2005 to 582.19 g C/m2/yr in 2015. Soil conservation also increased from 4.7 ton/ha to 5.5 ton/ha. Vegetation recovery and the conversion of farmland to forest, driven largely by restoration programs, contributed to this change. A positive relationship between increases in NEP, soil conservation and rural-urban migration (r = 0.62 and 0.53, P < 0.01, respectively) indicated decreasing human dependence on land reclamation and naturally regenerated vegetation. However, declining water yield from 784.3 to 724.5 mm highlights the trade-off between carbon sequestration and water yield should be considered. Our study suggests that conservation is critical to vegetation recovery in this region and that easing human pressure on land will play an important role.


2020 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Tianshi Pan ◽  
Lijun Zuo ◽  
Zengxiang Zhang ◽  
Xiaoli Zhao ◽  
Feifei Sun ◽  
...  

The implementation of ecological projects can largely change regional land use patterns, in turn altering the local hydrological process. Articulating these changes and their effects on ecosystem services, such as water conservation, is critical to understanding the impacts of land use activities and in directing future land planning toward regional sustainable development. Taking Zhangjiakou City of the Yongding River as the study area—a region with implementation of various ecological projects—the impact of land use changes on various hydrological components and water conservation capacity from 2000 to 2015 was simulated based on a soil and water assessment tool model (SWAT). An empirical regression model based on partial least squares was established to explore the contribution of different land use changes on water conservation. With special focus on the forest having the most complex effects on the hydrological process, the impacts of forest type and age on the water conservation capacity are discussed on different scales. Results show that between 2000 and 2015, the area of forest, grassland and cultivated land decreased by 0.05%, 0.98% and 1.64%, respectively, which reduces the regional evapotranspiration (0.48%) and soil water content (0.72%). The increase in settlement area (42.23%) is the main reason for the increase in water yield (14.52%). Most land use covered by vegetation has strong water conservation capacity, and the water conservation capacity of the forest is particularly outstanding. Farmland and settlements tend to have a negative effect on water conservation. The water conservation capacity of forest at all scales decreased significantly with the growth of forest (p < 0.05), while the water conservation capacity of different tree species had no significant difference. For the study area, increasing the forest area will be an effective way to improve the water conservation function, planting evergreen conifers can rapidly improve the regional water conservation capacity, while planting deciduous conifers is of great benefit to long-term sustainable development.


Sign in / Sign up

Export Citation Format

Share Document