scholarly journals Measurements of tectonic micro-displacements within the Idrija fault zone in the Učja valley (W Slovenia)

2020 ◽  
Vol 60 (1) ◽  
Author(s):  
Andrej Gosar

A recent slip-rate of an active fault is a very important seismotectonic parameter, but not easy to determine. Idrija fault, 120 km long, is a prominent geomorphologic feature with large seismogenic potential, still needed to be researched. Measurements of tectonic micro-displacements can provide insight into its recent activity. The Učja valley extends transversally to the Idrija fault and was therefore selected for the installation of TM 71 extensometer. Measurements on the crack within its inner fault zone are conducted from the year 2004. In 14 years of observations a systematic horizontal displacements with average rate of 0.21 mm/year and subordinate vertical displacements of 0.06 mm/year were established, proving the activity of this fault. An overview of methods of displacement measurements related to active faults and of newer interdisciplinary investigations of the Idrija fault is given. Displacement rates are beside for geodynamic interpretations important for improvement of seismotectonic models and thus for better seismic hazard assessment.

2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Ioannis G. Fountoulis ◽  
Spyridon D. Mavroulis

On September 13, 1986, a shallow earthquake (Ms=6.2) struck the city of Kalamata and the surrounding areas (SW Peloponnese, Greece) resulting in 20 fatalities, over 300 injuries, extensive structural damage and many earthquake environmental effects (EEE). The main shock was followed by several aftershocks, the strongest of which occurred two days later (Ms=5.4). The EEE induced by the 1986 Kalamata earthquake sequence include ground subsidence, seismic faults, seismic fractures, rockfalls and hydrological anomalies. The maximum ESI 2007 intensity for the main shock has been evaluated as IX<sub>ESI 2007</sub>, strongly related to the active fault zones and the reactivated faults observed in the area as well as to the intense morphology of the activated Dimiova-Perivolakia graben, which is a 2nd order neotectonic structure located in the SE margin of the Kalamata-Kyparissia mega-graben and bounded by active fault zones. The major structural damage of the main shock was selective and limited to villages founded on the activated Dimiova-Perivolakia graben (IX<sub>EMS-98</sub>) and to the Kalamata city (IX<sub>EMS-98</sub>) and its eastern suburbs (IX<sub>EMS-98</sub>) located at the crossing of the prolongation of two major active fault zones of the affected area. On the contrary, damage of this size was not observed in the surrounding neotectonic structures, which were not activated during this earthquake sequence. It is concluded that both intensity scales fit in with the neotectonic regime of the area. The ESI 2007 scale complemented the EMS-98 seismic intensities and provided a completed picture of the strength and the effects of the September 13, 1986, Kalamata earthquake on the natural and the manmade environment. Moreover, it contributed to a better picture of the earthquake scenario and represents a useful and reliable tool for seismic hazard assessment.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 83 ◽  
Author(s):  
Rolly E. Rimando ◽  
Jeremy M. Rimando

The Vigan-Aggao Fault is a 140-km-long complex active fault system consisting of multiple traces in the westernmost part of the Philippine Fault Zone (PFZ) in northern Luzon, the Philippines. In this paper, its traces, segmentation, and oblique left-lateral strike-slip motion are determined from horizontal and vertical displacements measured from over a thousand piercing points pricked from displaced spurs and streams observed from Google Earth Pro satellite images. This work marks the first instance of the extensive use of Google Earth as a tool in mapping and determining the kinematics of active faults. Complete 3D image coverage of a major thoroughgoing active fault system is freely and easily accessible on the Google Earth Pro platform. It provides a great advantage to researchers collecting morphotectonic displacement data, especially where access to aerial photos covering the entire fault system is next to impossible. This tool has not been applied in the past due to apprehensions on the positional measurement accuracy (mainly of the vertical component). The new method outlined in this paper demonstrates the applicability of this tool in the detailed mapping of active fault traces through a neotectonic analysis of fault-zone features. From the sense of motion of the active faults in northern Luzon and of the major bounding faults in central Luzon, the nature of deformation in these regions can be inferred. An understanding of the kinematics is critical in appreciating the distribution and the preferred mode of accommodation of deformation by faulting in central and northern Luzon resulting from oblique convergence of the Sunda Plate and the Philippine Sea Plate. The location, extent, segmentation patterns, and sense of motion of active faults are critical in coming up with reasonable estimates of the hazards involved and identifying areas prone to these hazards. The magnitude of earthquakes is also partly dependent on the type and nature of fault movement. With a proper evaluation of these parameters, earthquake hazards and their effects in different tectonic settings worldwide can be estimated more accurately.


Author(s):  
Thomas Chartier ◽  
Oona Scotti ◽  
Hélène Lyon-Caen ◽  
Aurélien Boiselet

Abstract. Modelling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (Fault to Fault -FtF- ruptures). The latest Californian model (UCERF-3) takes into account this possibility by considering a system level approach rather than an individual fault level approach using the geological , seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information long fault networks are often not well constrained. There is therefore a need to propose a methodology relying only on geological information to compute earthquake rate of the faults in the network. In this methodology, similarly to UCERF-3, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an imposed shape and the rate of earthquakes on each fault is determined by the specific slip-rate of each segment depending on the possible FtF ruptures. The modelled earthquake rates are then confronted to the available independent data (geodetical, seismological and paleoseismological data) in order to weigh different hypothesis explored in a logic tree. The methodology is tested on the Western Corinth Rift, Greece (WCR) where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ~15 mm/yr North-South extension. Modelling results show that geological, seismological extension rates and paleoseismological rates of earthquakes cannot be reconciled with only single fault rupture scenarios and require hypothesising a large spectrum of possible FtF rupture sets. Furthermore, in order to fit the imposed regional Gutenberg-Richter MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, individual fault’s MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modelled earthquake rupture rates with those deduced from the regional and local earthquake catalogue statistics and local paleosismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on a 5 km rather than 3 km, suggesting, a high connectivity of faults in the WCR fault system.


2017 ◽  
Vol 17 (8) ◽  
pp. 1447-1459 ◽  
Author(s):  
Julián García-Mayordomo ◽  
Raquel Martín-Banda ◽  
Juan M. Insua-Arévalo ◽  
José A. Álvarez-Gómez ◽  
José J. Martínez-Díaz ◽  
...  

Abstract. Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular faults are considered seismogenic sources. Active fault databases are also a very relevant source of information for earth scientists, earthquake engineers and even teachers or journalists. Hence, active fault databases should be updated and thoroughly reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should somehow indicate the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic parameters, such as maximum magnitude and recurrence interval. In this paper we explain how we tackled these issues during the process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote particular attention to describing the scheme devised for classifying the quality and representativeness of the geological evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this information as input for a straightforward rating of the level of reliability of maximum magnitude and recurrence interval fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for proper use in seismic hazard applications or as an informative source for non-specialized users. However, we already envision new improvements for a future update.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251606
Author(s):  
Bo Shao ◽  
Guiting Hou ◽  
Jun Shen

In this paper, we focus on why intraplate seismic initiation and migration occurs, which has widely been considered to be caused by static stress triggering caused by earthquakes, as well as post-seismic slips. To illustrate the mechanism underlying large earthquakes, in particular the migration caused by two key episodes that occurred after 1500 in the Bohai-Zhangjiakou Fault Zone (BZFZ) of North China, we developed a high-resolution three-dimensional viscoelastic finite element model that includes the active faults with vertical segmentation, their periodical locking, and the lithosphere heterogeneity. We used the birth and death of element groups to simulate stress intensity changes during the two episodes (named Episode I and II), with our results showing that the Tangshan earthquake was primarily triggered by the Sanhe-Pinggu M8.0 earthquake in 1679, whereas the Zhangbei M6.2 earthquake in 1998 was not triggered by earthquakes in Episode I. According to our work, the calculated stress changes in the different segments of the fault zone correspond to the magnitude of the triggered earthquakes. Further, the largest stress decrease was near the Sanhe-Pinggu fault and occurred the largest earthquake in Episode I, whereas the largest stress increase was near the Tangshan fault and occurred during the largest earthquake in Episode II. Given the above, we propose a model for seismic migration to describe the dynamic mechanisms of earthquake migration within the BZFZ and North China, in which the factors affecting both the seismic migration path and intensity primarily include the distance between the triggered active fault and the original fault, the coupling of the active faults, the location and scale of the low-velocity anomaly, its distance from the active fault, and the location and scale of the crustal thinning.


2021 ◽  
Author(s):  
Laurent Bollinger ◽  
Yann Klinger ◽  
Steven Forman ◽  
Odonbaatar Chimed ◽  
Amgalan Bayasgalan ◽  
...  

Abstract The spatial distribution of large earthquakes in Slowly Deforming Continental Regions (SDCR) is poorly documented and, thus, has often been deemed to be random. Unlike in high strain regions, where seismic activity concentrates cyclically along major active faults, earthquakes in SDCR may seem to occur more erratically in space and time. This questions classical fault behavior models, posing paramount issues for seismic hazard assessment. Here, we investigate the M7, 1967, Mogod earthquake in Mongolia, a region recognized as a SDCR. Despite the absence of visible cumulative deformation at the ground surface, we found evidence for at least 3 surface rupturing earthquakes during the last 50,000 years, associated to a slip-rate of 0,06 ± 0,01 mm/yr. These results show that in SDCR, like in faster deforming regions, deformation localizes on specific structures. However, the excessive length of return time for large earthquakes along these structures makes it more difficult to recognize earthquake series, and could conversely lead to the misconception that in SDCR earthquakes would be randomly located. Thus, our result emphasizes the need for systematic appraisal of the potential seismogenic structures in SDCR in order to lower the uncertainties associated with the seismogenic sources in seismic hazard models.


2021 ◽  
Vol 21 (1) ◽  
pp. 707-714
Author(s):  
Lei Wang ◽  
Zhicai Wang ◽  
Hongtai Chao ◽  
Chuancheng Yang

Using a ZEISS Axio Scope A1 ordinary polarizing microscope, a ZEISS Sigma 300 scanning electron microscope and a HITACHI S4800 scanning electron microscope, we observe micro/nanocharacteristics of slip planes in gouges sampled from the Tanlu fault zone, the Haiyuan fault zone and several other Late Pleistocene active faults, such as the Haiyang fault, the Shuangshan-Lijiazhuang fault and the Xintai-Mengyin fault, in Shandong Province. Based on microscopic observation of gouges, a straight slip zone is a sign of seismic stick slipping. According to scanning electron microscopy results, the surface of gouges is commonly covered by nanocoatings. Such coatings feature nanoparticles, aggregations, scratches, grooves, cracks and “silver lines.” According to the characteristics of nanomaterials, we believe that nanocoatings on gouges could help rapidly unload tectonic stress in the process of energy accumulation and weaken the strength of the active fault, which is beneficial to creep slipping and has a weakening effect on seismogenesis.


2021 ◽  
Author(s):  
Jack N. Williams ◽  
Luke N. J. Wedmore ◽  
Åke Fagereng ◽  
Maximilian J. Werner ◽  
Hassan Mdala ◽  
...  

Abstract. Active fault data are commonly used in seismic hazard assessments, but there are challenges in deriving the slip rate, geometry, and frequency of earthquakes along active faults. Herein, we present the open-access geospatial Malawi Seismogenic Source Database (MSSD), which describes the seismogenic properties of faults that have formed during East African rifting in Malawi. We first use empirical observations to geometrically classify active faults into section, fault, and multi-fault seismogenic sources. For sources in the North Basin of Lake Malawi, slip rates can be derived from the vertical offset of a seismic reflector that is estimated to be 75 ka based on dated core. Elsewhere, slip rates are constrained from advancing a ‘systems-based’ approach that partitions geodetically-derived rift extension rates in Malawi between seismogenic sources using a priori constraints on regional strain distribution in magma-poor continental rifts. Slip rates are then combined with source geometry and empirical scaling relationships to estimate earthquake magnitudes and recurrence intervals, and their uncertainty is described from the variability of outcomes from a logic tree used in these calculations. We find that for sources in the Lake Malawi’s North Basin, where slip rates can be derived from both the geodetic data and the offset seismic reflector, the slip rate estimates are within error of each other, although those from the offset reflector are higher. Sources in the MSSD are 5–200 km long, which implies that large magnitude (MW 7–8) earthquakes may occur in Malawi. Low slip rates (0.05–2 mm/yr), however, mean that the frequency of such events will be low (recurrence intervals ~103–104 years). The MSSD represents an important resource for investigating Malawi’s increasing seismic risks and provides a framework for incorporating active fault data into seismic hazard assessment in other tectonically active regions.


2017 ◽  
Author(s):  
Julián García-Mayordomo ◽  
Raquel Martín-Banda ◽  
Juan M. Insua-Arévalo ◽  
José A. Álvarez-Gómez ◽  
José J. Martínez-Díaz ◽  
...  

Abstract. Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular faults are considered as seismogenic sources. Active fault databases are also a very relevant source of information for earth scientists, earthquake engineers and even teachers or journalists. Active fault databases, hence, should be updated and through reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should indicate somehow the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic parameters, as Maximum Magnitude and Recurrence Interval. In this paper we explain how we tackled these issues during the process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote particular attention to describing the scheme devised for classifying the quality and representativeness of the geological evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this information as input for a straightforward rating of the level of reliability of Maximum Magnitude and Recurrence Interval fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for a proper use in seismic hazard applications or as an informative source for non-specialized users. However, we already envision new improvements for a future update.


Sign in / Sign up

Export Citation Format

Share Document