scholarly journals Physicochemical Profile of Essential Oils Obtained from Chia (Salvia hispanica L.) Seeds Grown in Different Agro-Ecological Zones of Kenya

2021 ◽  
Vol 2 (3) ◽  
pp. 21-26
Author(s):  
Clement Komu ◽  
Monica Mburu ◽  
Daniel Njoroge ◽  
Richard Koskei

The chia seed samples were purchased from farmers in five locations in three agro-ecological zones in Kenya. The oil was obtained by cold pressing and physicochemical properties were determined; the fatty acid profile was determined by Gas chromatography. The mean oil yield from pressing was 16%, the refractive index of chia seed oil at 25 °C ranged from 1.4811 to 1.4832, specific gravity ranged from 0.9616 to 0.9629, acidity index and free fatty acids content ranged from 0.0345-0.0808 mg KOH/g oil, and 0.1736-0.4061%, respectively. The matter in volatiles ranged from 0.047-0.086%. The saponification value ranged from 162.1969–183.3791 milligrams (mg) of potassium hydroxide (KOH) per gram (g) of chia seed oil. The differences in refractive index, acidity index, free fatty acids, specific gravity, and saponification value, were statistically significant at (P<0.05). The α-linolenic (C18:3) and linoleic acids (C18:2) were the dominant fatty acids in chia seed oil and they varied with regions. The levels α-linolenic (C18:3) and linoleic acids (C18:2) ranged from 53.32-64.04% and 19.37-22.87%, respectively. The levels of oleic, linoleic, and linolenic fatty acids in chia seed oils from different regions were statistically significant at (P<0.05). The study recommended the cultivation of chia seed in agro-ecological zones II and III where higher yields and higher content of linoleic and linolenic fatty acids were reported, consumption of chia seed oil as edible oil, and substitution of marine oils with chia oil as potential sources of polyunsaturated fatty acids.

2019 ◽  
Vol 70 (2) ◽  
pp. 302 ◽  
Author(s):  
D. Derewiaka ◽  
N. Stepnowska ◽  
J. Bryś ◽  
M. Ziarno ◽  
M. Ciecierska ◽  
...  

The aim of this study was to evaluate the effect of a 2% chia seed oil addition to natural yogurt on its quality and to determine whether chia seed oil can be used as an additive in fermented milk products. The dominant species of microorganisms found in yogurt was Lb. delbruecki subsp. bulgaricus. The number in natural yogurt varied from 6.2 to 6.3·106 CFU·g-1 and in enriched yogurt between 6.1 and 6.3·106 CFU·g-1. Chia seed oil contained 4.5 g of sterol per 100 g of oil. The addition of 2% chia seed oil to natural yogurt resulted in a high content of phytosterol in yogurt. Natural yogurt contained 1.2 g of cholesterol in 100 g of the fat fraction of yogurt. Enriched yogurt contained 2 g of phytosterols. The addition of 2% chia seed oil to natural yogurt resulted in higher amounts of unsaturated fatty acids, especially linoleic and α-linolenic acid.


2015 ◽  
Vol 162 ◽  
pp. 48-55 ◽  
Author(s):  
Luciana Magdalena Julio ◽  
Vanesa Yanet Ixtaina ◽  
Mariela Alejandra Fernández ◽  
Rosa Maria Torres Sánchez ◽  
Jorge Ricardo Wagner ◽  
...  

2020 ◽  
Vol 71 (3) ◽  
pp. 367
Author(s):  
A. Al-Farga ◽  
M. Baeshen ◽  
F. M. Aqlan ◽  
A. Siddeeg ◽  
M. Afifi ◽  
...  

This study investigated the effects of blending alhydwan seed oil and peanut oil as a way of enhancing the stability and chemical characteristics of plant seed oils and to discover more innovative foods of high nutraceutical value which can be used in other food production systems. Alhydwan seed oil and peanut oil blended at proportions of 10:90, 20:80, 30:70, 40:60 and 50:50 (v/v) were evaluated according to their physi­cochemical properties, including refractive index, relative density, saponification value, peroxide value, iodine value, free fatty acids, oxidative stability index, and tocopherol contents using various standard and published methods. At room temperature, all of the oil blends were in the liquid state. The physicochemical profiles of the blended oils showed significant decreases (p < 0.05) in peroxide value (6.97–6.02 meq O2/kg oil), refractive index at 25 °C (1.462–1.446), free fatty acids (2.29–1.71%), and saponification value (186.44–183.77 mg KOH/g), and increases in iodine value and relative density at 25 °C (98.10–102.89 and 0.89–0.91, respectively), especially with an analhydwan seed oil to peanut oil ratio of 10:90. Among the fatty acids, oleic and linoleic acids were most abundant in the 50:50 and 10:90 alhydwan seed oil to peanut oil blends, respectively. Oxidative stability increased as the proportion of alhydwan oil increased. In terms of tocopherol contents (γ, δ, and α), γ-tocopherol had the highest values across all of the blended proportions, followed by δ-tocopherol. The overall acceptability was good for all blends. The incorporation of alhydwan seed oil into peanut oil resulted in inexpensive, high-quality blended oil that may be useful in health food products and pharmaceuticals without compromising sensory characteristics.


Author(s):  
Bingbing Liu ◽  
Weidong Yan

Abstract Alpha-linolenic acid (ALA) and linoleic acid (LA), abundant in chia seed oil, are useful polyunsaturated fatty acids (PUFA) with numerous health benefits. The objectives of the present study were to explore the optimum extraction condition of chia seed oil and the possibilities of direct analysis of ALA and LA in chia seed oil by reversed-phase high-performance liquid chromatography with ultraviolet detection (RP-HPLC-UV). The optimized chia seed oil extraction condition was set by the usage of Soxhlet extrator with hexane as a solvent, with the solvent to solid ratio of 8 and the extraction time of 8 h. Prior to HPLC-UV analysis, the oil was saponified in order to get the free fatty acids for detection. The results showed that the proposed HPLC-UV method allowed the quantification of ALA and LA in chia seed oil. The method was simple, rapid (within 18 min) and sensitive (limit of detection 0.006 mg/mL for ALA and 0.02 mg/mL for LA) and precise (RSD ≤ 2%). Thus, the proposed experimental designs were shown to offer considerable advantages over traditional derivatization approaches in the ALA and LA analyses.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3219 ◽  
Author(s):  
Yingbin Shen ◽  
Liyou Zheng ◽  
Jun Jin ◽  
Xiaojing Li ◽  
Junning Fu ◽  
...  

The purpose of this research was to investigate the chemical profile, nutritional quality, antioxidant and hypolipidemic effects of Mexican chia seed oil (CSO) in vitro. Chemical characterization of CSO indicated the content of α-linolenic acid (63.64% of total fatty acids) to be the highest, followed by linoleic acid (19.84%), and saturated fatty acid (less than 11%). Trilinolenin content (53.44% of total triacylglycerols (TAGs)) was found to be the highest among seven TAGs in CSO. The antioxidant capacity of CSO, evaluated with ABTS•+ and DPPH• methods, showed mild antioxidant capacity when compared with Tocopherol and Catechin. In addition, CSO was found to lower triglyceride (TG) and low-density lipoprotein-cholesterol (LDL-C) levels by 25.8% and 72.9%respectively in a HepG2 lipid accumulation model. As CSO exhibits these chemical and biological characteristics, it is a potential resource of essential fatty acids for human use.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1283
Author(s):  
Ivan Dominguez-Candela ◽  
Jose Miguel Ferri ◽  
Salvador Cayetano Cardona ◽  
Jaime Lora ◽  
Vicent Fombuena

The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0–10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 °C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.


Author(s):  
D. Kosini ◽  
E. N. Nukenine ◽  
K. H. Tofel ◽  
J. W. Goudoungou ◽  
D. J. Langsi ◽  
...  

The response of pests to the effects of a botanical insecticide can vary spatially and temporally. To test whether efficacy of botanicals differed spatially, the insecticidal efficacy of Gnidia kaussiana and Ocimum canum against Callosobruchus maculatus was investigated in two different agro-ecological zones of Cameroon, i.e. Maroua and Ngaoundéré (sudano-sahelian and sudano-guinean zones, respectively). Experiments were, therefore, conducted to determine the insect mortality, progeny production, grain damage and weight loss in cowpea. G. kaussiana was more effective against C. maculatus in Maroua (LD50 = 0.12 g/kg at 6th day of exposure) than in Ngaoundéré (LD50 = 4.35 g/kg at 6th day of exposure). Moreover, it was more toxic than O. canum extract and neem seed oil (reference), irrespective to the agro-ecological zones. Overall, the performance of O. canum did not vary significantly between the two zones, and was slightly more active (LD50 = 4.66 g/kg) than the reference insecticide neem seed oil (LD50 = 4.89 g/kg) in Ngaoundéré in contrast to the results recoded in Maroua (LD50 = 1.44 g/kg and 2.60 g/kg, respectively for neem seed oil and O. canum at 6 days post exposure). In view of the above, there were some discrepancies in extract performance between Maroua and Ngaoundéré. Thus, the establishment of dose rates of insecticidal products formulated from G. kaussiana must be specific to an environment in contrast to those from O. canum.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Foluso O. Agunbiade ◽  
Tolulope A. Adewole

The future of fossil fuel sources of energy has necessitated the need to search for renewable alternatives. Thus, Carica papaya seed oil (CPSO) was employed as feedstock for the production of biodiesel by methanolysis. The seed was obtained locally, dried, and extracted with n-hexane. The CPSO was analyzed for specific gravity, viscosity, iodine value, and saponification value, among others using standard methods. The oil was transesterified by two-stage catalysis with oil to methanol mole ratio of 1 : 9. The biodiesel produced was subjected to standard fuel tests. The seed has an oil yield of 31.2% which is commercially viable. The kinematic viscosity of the oil at 313 K was 27.4 mm2s−1 while that of Carica papaya oil methylester (CPOME) was reduced to 3.57 mm2s−1 and the specific gravity was 0.84 comparable with other seed-oil biodiesels and number 2 diesel. Other oil properties were compared favourably with seed oils already documented for biodiesel synthesis. CPOME’s cloud and pour points were 275 K and 274 K, respectively, and relatively higher than other biodiesels and number 2 diesel. CPOME exhibits moderate corrosion of copper strip. The methanolysis improved the fuel properties of the CPOME similar to other biodiesels. CPSO therefore exhibits a potential for biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document