scholarly journals Comparative study of the influence of three types of fibre in the shrinkage of recycled mortar

2018 ◽  
Vol 68 (332) ◽  
pp. 168 ◽  
Author(s):  
P. Saiz-Martínez ◽  
D. Ferrández-Vega ◽  
C. Morón-Fernández ◽  
A. Payán de Tejada-Alonso

Construction and demolition waste can be used as a substitution of natural aggregate in mortar and concrete elaboration. A poorer quality of recycled aggregates generally has negative impact on mortar properties. Shrinkage is one of the properties that experiences worse outcome due to the higher absorption of recycled aggregates. This research evaluates the potential shrinkage of mortars elaborated with recycled concrete aggregates both with and without fibres addition, as well as the relation between moisture loss and shrinkage caused by mortar drying process using a capacitive sensor of the authors’ own design. Two different mortar dosages 1:3 and 1:4 and three fiber types: polypropylene fiber, fiberglass and steel fiber, in different proportions were used. Obtained results show that the use of polypropylene fiber improves the recycled mortars performance against shrinkage in 0.2%. Moreover, a clear relation between dry shrinkage and moisture loss was observed.

Author(s):  
Cinthia Maia Pederneiras

The construction industry is considered the biggest waste producer in Europe. In order to encourage recycling, European Parliament decreed through the Waste Framework Directive 2008/98/EC, that at least 70% of construction and demolition waste should be recycled by 2020. From recycling plants, three types of recycled aggregates are produced. Recycled Concrete Aggregate, mainly from cementitious waste, as such as concrete and mortars residues; Recycled Masonry Aggregates mainly composed by recycled ceramic materials, as such as tiles and bricks residues; Mixed Recycled Aggregates based on rubble residues, from heterogenous materials waste. This research evaluated the technical feasibility of rendering mortars with Recycled Concrete Aggregates and Mixed Recycled Aggregates, in different volume incorporation of 0%, 20%, 50% and 100%. The experimental programme comprised an analyse of the fresh and hardened properties, regarding the water and mechanical behaviour of the mortars. From the results, it was noticed that the modified mortars presented a reduction in the modulus of elasticity, which its correlated to a less susceptibility to cracking. Regarding mechanical performance, the modified mortars obtained reduction of the flexural and compressive strength over time. However, it was not a significant harmful criterion. Therefore, the incorporation of recycled aggregates in cementitious materials is considered a technical and sustainable solution.


2018 ◽  
Vol 10 (8) ◽  
pp. 2590 ◽  
Author(s):  
Debora Acosta Alvarez ◽  
Anadelys Alonso Aenlle ◽  
Antonio Tenza-Abril

Recycled Aggregates (RA) from construction and demolition waste (CDW) are a technically viable alternative to manufacture of asphalt concrete (AC). The main objective of this work is to evaluate the properties of hot asphalt mixtures that have been manufactured with different sources of CDW (material from concrete test specimens, material from the demolition of sidewalks and waste from prefabrication plants) from Cuba. Dense asphalt mixtures were manufactured with a maximum aggregate size of 19 mm, partially replacing (40%) the natural aggregate fraction measured between 5 mm and 10 mm with three types of RA from Cuba. Marshall specimens were manufactured to determine the main properties of the AC in terms of density, voids, stability and deformation. Additionally, the stiffness modulus of the AC was evaluated at 7 °C, 25 °C and 50 °C. The results corroborate the potential for using these sources of CDW from Cuba as a RA in asphalt concrete, thereby contributing an important environmental and economic benefit.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2651
Author(s):  
Francisco Agrela ◽  
Francisco González-Gallardo ◽  
Julia Rosales ◽  
Javier Tavira ◽  
Jesús Ayuso ◽  
...  

The application of recycled aggregates (RA) from construction and demolition waste and crushed concrete blocks is a very important challenge for the coming years from the environmental point of view, in order to reduce the exploitation of natural resources. In Spain, the use of these recycled materials in the construction of road bases and sub-bases is growing significantly. However, presently, there are few studies focused on the properties and behavior of RA in civil works such as road sections or seaport platforms. In this work, two types of RA were studied and used in a complete real-scale application. Firstly, recycled concrete aggregates (RCA) were applied in the granular base layer under bituminous superficial layers, and secondly mixed recycled aggregates (MRA) which contain a mix of ceramic, asphalt, and concrete particles were applied in the granular subbase layer, under the base layer made with RCA. Both RA were applied in a port loading platform in Huelva, applying a 100% recycling rate. This civil engineering work complied with the technical requirements of the current Spanish legislation required for the use of conventional aggregates. The environmental benefits of this work have been very relevant, and it should encourage the application of MRA and RCA in civil engineering works such as port platforms in a much more extended way. This is the first and documented real-scale application of RA to completely build the base and sub-base of a platform in the Huelva Port, Spain, replacing 100% of natural aggregates with recycled ones.


2020 ◽  
Author(s):  
Michael Galetakis ◽  
Athanasia Soultana ◽  
Theodoros Daskalakis

<p>Waste concrete is the most predominant constituent material among construction and demolition waste. Recycling of this material could minimize landfilled waste and mineral resources depletion. This study investigates, in laboratory scale, the production of upgraded recycled concrete aggregates, suitable for the replacement of primary (crushed limestone sand) used in cement mortars, by means of selective crushing and autogenous grinding. These particle size reduction techniques, compared to traditional crushing/grinding, have the potential to remove the brittle cement paste from the aggregates, thus significantly improving their quality. The granulometry, the density, the water absorption (EN 13755) and the flow coefficient (EN 933-6) of the produced upgraded sand was determined and compared to crushed limestone sand. Subsequently, cement mortar specimens were manufactured using upgraded aggregates for total replacement of crushed limestone sand. Specimens were tested for their compressive and flexural strength (EN 196-1), density and water absorption. Results indicated that the upgraded recycled sand produced through the selective crushing and autogenous grinding processes had improved properties compared to the one produced by conventional crushing processes (flexural and compressive strength of cement mortar specimens were increased by 29% and 7%, respectively). However, the quality of the upgraded sand is lower than that of the primary crushed limestone. To further explore the issue, it is planned to investigate in more detail the process of autogenous grinding and to investigate the use of other selective aggregate-cement paste liberation technologies.</p>


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2893
Author(s):  
Kui Hu ◽  
Yujing Chen ◽  
Caihua Yu ◽  
Dong Xu ◽  
Shihao Cao ◽  
...  

Mixed recycled aggregates (MRA) from construction and demolition waste (CDW) with high-purity and environmental performance are required for highway construction application in base layer and precast concrete curbs. The main problematic constituents that reduce the quality level of the recycled aggregates applications are brick components, flaky particles, and attached mortar, which make up a large proportion of CDW in some countries. This paper studies the potential of brick separation technology based on shape characteristics in order to increase the recycled concrete aggregates (RCA) purity for MRA quality improvement. MRA after purification was also processed with surface treatment experiment by rotating in a cylinder to improve the shape characteristics and to remove the attached mortar. The purity, strength property, densities, water absorption ratio, shape index, and mortar removal ratio of MRA were studied before and after the use of the brick separation and surface treatment proposed in this study. Finally, the recycled aggregates upgradation solution was adopted in a stationary recycling plant designed for a length of 113 km highway construction. The properties of CDW mixed concrete for precast curbs manufacturing were conducted. The results indicate that problematic fractions (brick components, particle shape, and surface weakness) in the MRA were significantly reduced by using brick separation and surface treatment solution. Above all, it is very important that the proposed brick separation method was verified to be practically adopted in CDW recycling plant for highway base layer construction and concrete curbs manufacturing at a low cost.


2015 ◽  
Vol 732 ◽  
pp. 411-414 ◽  
Author(s):  
Tereza Pavlů ◽  
Magdaléna Šefflová

Recycled construction and demolition waste, especially recycled concrete, is able to use as an aggregate for concrete. The high water absorption capacity (WA) of recycled aggregate has a negative impact of concrete mix workability and influences the water-cement ratio. This paper presents results of experimental measurement of WA of recycled aggregate and recycled concrete. Series of concrete samples with various replacement ratios of natural aggregate and recycled aggregate were prepared for this study. The main aim of this study is to analyze the influence of recycled aggregate WA, and mixture ratios on the WA of hardened concrete (HC). Regression model to estimate the WA of hardened concrete is presented.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 695
Author(s):  
Natt Makul ◽  
Roman Fediuk ◽  
Mugahed Amran ◽  
Abdullah M. Zeyad ◽  
Sergey Klyuev ◽  
...  

Currently, a number of disadvantages hampers the use of recycled concrete aggregates (RCA). The current review proves that concretes made with complete replacement of natural aggregate with RCA allow the production of high-quality concrete. One of the possibilities for improving concrete properties with RCA is the use of extended curing and pozzolanic materials with varying cement ratios. The potential use of RCA concretes is in the production of high-value materials that increase environmental and financial benefits. RCA have strong potential in the development of a new generation of concrete and stimulate economic activity in many countries in addition to optimizing natural resources. Economic benefits include minimal travel costs; cheaper sources of concrete than newly mined aggregates; reduction of the landfill area required for the placement of concrete waste; the use of RCA minimizes the need for gravel extraction, etc. The proposed strategy could be to sequentially separate demolition waste such as roof finishes, waterproof materials, interior and exterior materials, etc. Closing life cycles is the main approach used for efficient structures for the recycling and reuse of construction and demolition waste in the production and recovery of materials, especially when recycling and reusing materials. In the life cycle, the recycling of recovered materials allows them to be used for new construction purposes, avoiding the use of natural concrete aggregates. Government, design institutes, construction departments and project managers should be involved in the creation and use of RCA. In demolition and construction, the main players are the project owners. Their obligations, expectations and responsibilities must be properly aligned. For the past 20 years, recycled concrete aggregate from demolition and construction waste has been considered as an alternative to pure concrete in structural concrete to minimize the environmental impact of construction waste and demolition waste and the conversion of natural aggregate resources. It is now recognized that the use of RCA for the generations of concrete is a promising and very attractive technology for reducing the environmental impact of the construction sector and conserving natural resources. In the market, the selling price is not an obstacle for market applications of RCA, as there are scenarios in which their cost is lower than the cost of products made from conventional building materials. This is more of an acceptance factor in the market for recycled concrete aggregates. In this sector, the lack of identification, accreditation and uniform quality certification systems and their narrow application cause some marketing problems. With proper RCA preparation, concrete with standard physical and mechanical properties and performance characteristics can be obtained.


2021 ◽  
Vol 6 (11) ◽  
pp. 155
Author(s):  
Natividad Garcia-Troncoso ◽  
Bowen Xu ◽  
Wilhenn Probst-Pesantez

Recycling of construction and demolition waste is a central point of discussion throughout the world. The application of recycled concrete as partial replacement of mineral aggregates in concrete mixes is one of the alternatives in the reduction of pollution and savings in carbon emissions. The combined influence of the recycled crushed concrete, lime, and natural pozzolana on the mechanical and sustainable properties of concrete materials is firstly proposed in this study. In this research, unconventional construction materials are employed to produce concrete: the recycled crushed concrete is used as coarse aggregate, while lime and natural pozzolana are used as a partial replacement for cement. Substitutions of 10%, 20%, 50% of gravel are made with recycled aggregates, and 2%, 5%, 10% of cement with lime and natural pozzolan. Tests on the fresh and hardened properties, destructive (compressive strength) and non-destructive tests (sclerometer rebound and ultrasound) of mixtures are carried out. It is shown that the use of recycled materials can provide an increase in compressive strength of up to 34% with respect to conventional concrete. Life cycle cost and sustainability assessments indicate that concrete materials incorporating recycled aggregate possess good economic and environmental impacts.


2021 ◽  
Vol 03 (03) ◽  
pp. 1-1
Author(s):  
Athanasia Soultana ◽  
Michael Galetakis ◽  
Anthoula Vasiliou ◽  
Konstantinos Komnitsas ◽  
Despina Vamvuka

Waste concrete is the most predominant constituent material among construction and demolition waste. Current waste concrete recycling is limited to the use of recycled concrete aggregates as a road-base material and less as aggregates in new concrete mixes. Further, the production of recycled concrete aggregates results in the generation of a high amount of fines, consisting mainly of cement paste particles. Hence, this study aims to produce the cement mortars using the upgraded recycled concrete aggregates (sand granulometry) for the total replacement of natural aggregates and recycled concrete fines activated through a thermal treatment method as a partial cement substitution material. Cement mortar specimens were tested for their compressive and flexural strength, density and water absorption performance. The results showed that the combined usage of upgraded recycled concrete sand for total replacement of primary crushed sand and recycled concrete fines as partial cement replacement material is a promising option to produce cement mortars.


2021 ◽  
Vol 895 ◽  
pp. 139-146
Author(s):  
Sarah Safaaldeen Musa ◽  
Noorance Al-Mukaram ◽  
Mohammed Bally Mahdi

Recently, the construction industry uses the Recycled Concrete Aggregates (RCA)resulting from construction and demolition waste (CDW) to achieve sustainable requirements andeconomic benefits. In this paper, asphalt paving mixes were prepared with RCA instead of naturalaggregates for the base course in flexible road pavements and walking areas used by pedestrians andcyclists. Different asphalt mixes samples were prepared with different asphalt contents to meet therequired specifications. Additionally, several laboratory tests were carried out to assess mixturebehavior including the Marshall test. The results indicated that the mixture made with aggregates ofCDW have met all the requirements of Iraqi specifications of roads and bridges (SORB/R9). Thisinvestigation could be a useful guide for road engineers in designing asphalt mixtures from RCA.


Sign in / Sign up

Export Citation Format

Share Document