scholarly journals An Efficient Localization Method for Mobile Nodes in Wireless Sensor Networks

2017 ◽  
Vol 13 (03) ◽  
pp. 160 ◽  
Author(s):  
Zhiyu Qiu ◽  
Lihong Wu ◽  
Peixin Zhang

<p style="margin: 1em 0px; -ms-layout-grid-mode: char;"><span style="font-family: Times New Roman; font-size: medium;">With the development of electronic technology and communication protocols, wireless sensor network technology is developing rapidly. In a sense, the traditional static wireless sensor network has been unable to meet the needs of new applications. However, the introduction of mobile nodes extends the application of wireless sensor networks, despite the technical challenges. Because of its flexibility, the mobile wireless sensor network has attracted great attention, and even small, self-controlled mobile sensor devices have appeared. At present, mobile node localization has become one of the hotspots in wireless sensor networks. As the storage energy of wireless sensor network nodes is limited, and the communication radius is small, many scientists have focused their research direction on the location algorithm of mobile nodes. According to the continuity principle of mobile node movement, in this paper we propose an improved mobile node localization algorithm based on the Monte Carlo Location (MCL) algorithm, and the method can reduce the sampling interval effectively. First of all, this paper introduces the structure and classification of wireless sensor localization technology. Secondly, the principle of the Monte Carlo Location algorithm is described in detail. Thirdly, we propose an efficient method for mobile node localization based on the MCL algorithm. Finally, the effectiveness and accuracy of the new algorithm are verified by comparative analysis.</span></p>

Author(s):  
Priyanka Jain

Abstract: The area of underwater wireless sensor networks (UWSNs) is garnering an increasing attention from researchers due to its broad potential for exploring and harnessing oceanic sources of interest. Because of the need for real-time remote data monitoring, underwater acoustic sensor networks (UASNs) have become a popular choice. The restricted availability and nonrechargeability of energy resources, as well as the relative inaccessibility of deployed sensor nodes for energy replenishment, forced the development of many energy optimization approaches un the UASN. Clustering is an example of a technology that improves system scalability while also lowering energy consumption. Due to the unstable underwater environment, coverage and connectivity are two important features that determine the proper detection and communication of events of interest in UWSN. A sensor network consists of several nodes that are low in cost and have a battery with low capacity. In wireless sensor networks, knowing the position of a specific device in the network is a critical challenge. Many wireless systems require location information from mobile nodes. Keywords: MAC, Communication cost, IDV-Hop algorithm, Localization, Ranging error, unconstrained optimization, Wireless sensor network, Distributed Least Square


2014 ◽  
Vol 548-549 ◽  
pp. 1415-1419 ◽  
Author(s):  
Jie He ◽  
La Yuan Li

In many instances, as special applications of wireless sensor networks, wireless sensor networks need to know the location of nodes. A wireless sensor network localization algorithm based on Particle Swarm Optimization is proposed in this thesis to solve the problem of inaccurate positioning and large energy consumption for wireless sensor network node positioning. The algorithm combines the particle swarm optimization algorithm (PSO) and node localization algorithm to improve the positioning accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ling Song ◽  
Xiaoyu Jiang ◽  
Liying Wang ◽  
Xiaochun Hu

Wireless sensor network (WSN) is a research hot spot of scholars in recent years, in which node localization technology is one of the key technologies in the field of wireless sensor network. At present, there are more researches on static node localization, but relatively few on mobile node localization. The Monte Carlo mobile node localization algorithm utilizes the mobility of nodes to overcome the impact of node velocity on positioning accuracy. However, there are still several problems: first, the demand for anchor nodes is large, which makes the positioning cost too high; second, the sampling efficiency is low, and it is easy to fall into the infinite loop of sampling and filtering; and third, the positioning accuracy and positioning coverage are not high. In order to solve the above three problems, this paper proposes a Monte Carlo node location algorithm based on improved QUasi-Affine TRansformation Evolutionary (QUATRE) optimization. The algorithm firstly selects the high-quality common nodes in the range of one hop of unknown nodes as temporary anchor nodes, and takes the temporary anchor nodes and anchor nodes as the reference nodes for positioning, so as to construct a more accurate sampling area; then, the improved QUATRE optimization algorithm is used to obtain the estimated location of unknown nodes in the sampling area. Simulation experiments show that the Monte Carlo node positioning algorithm based on the improved QUATRE optimization has higher positioning accuracy and positioning coverage, especially when the number of anchor nodes is relatively small.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hua Wu ◽  
Ju Liu ◽  
Zheng Dong ◽  
Yang Liu

In this paper, a hybrid adaptive MCB-PSO node localization algorithm is proposed for three-dimensional mobile wireless sensor networks (MWSNs), which considers the random mobility of both anchor and unknown nodes. An improved particle swarm optimization (PSO) approach is presented with Monte Carlo localization boxed (MCB) to locate mobile nodes. It solves the particle degeneracy problem that appeared in traditional MCB. In the proposed algorithm, a random waypoint model is incorporated to describe random movements of anchor and unknown nodes based on different time units. An adaptive anchor selection operator is designed to improve the performance of standard PSO for each particle based on time units and generations, to maintain the searching ability in the last few time units and particle generations. The objective function of standard PSO is then reformed to make it obtain a better rate of convergence and more accurate cost value for the global optimum position. Furthermore, the moving scope of each particle is constrained in a specified space to improve the searching efficiency as well as to save calculation time. Experiments are made in MATLAB software, and it is compared with DV-Hop, Centroid, MCL, and MCB. Three evaluation indexes are introduced, namely, normalized average localization error, average localization time, and localization rate. The simulation results show that the proposed algorithm works well in every situation with the highest localization accuracy, least time consumptions, and highest localization rates.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2017 ◽  
Vol 13 (07) ◽  
pp. 36
Author(s):  
Yuxia Shen

<p><span style="font-size: medium;"><span style="font-family: 宋体;">In wireless sensor networks, for improving the time synchronization perfromance of online monitoring and application of ZigBee protocol, a scheme is designed. For this objective, first of all, the ZigBee protocol specification is summarized, a profound analysis of the hardware abstraction architecture of TinyOS operating system is made; the advantages of the ZigBee protocol compared with the traditional radio technology are comparatively analyzed. At the same time, the node design block diagram based on CC2430 and related development system is provided. In the TinyOS2.x operating system, we analyze CC2430 application program abstract architecture, and on this basis, give the realization process of program design. The research results showed that we achieve an on-line monitoring system based on ZigBee protocol, which has realistic significance of applying ZigBee protocol in wireless sensor network of electrical equipment online monitoring. Based on the above research, it is concluded that the online monitoring system can collect the temperature parameters of the monitored object in real time that it can be widely applied in wireless sensor networks.</span></span></p>


Author(s):  
Audrey NANGUE ◽  
◽  
Elie FUTE TAGNE ◽  
Emmanuel TONYE

The success of the mission assigned to a Wireless Sensor Network (WSN) depends heavily on the cooperation between the nodes of this network. Indeed, given the vulnerability of wireless sensor networks to attack, some entities may engage in malicious behavior aimed at undermining the proper functioning of the network. As a result, the selection of reliable nodes for task execution becomes a necessity for the network. To improve the cooperation and security of wireless sensor networks, the use of Trust Management Systems (TMS) is increasingly recommended due to their low resource consumption. The various existing trust management systems differ in their methods of estimating trust value. The existing ones are very rigid and not very accurate. In this paper, we propose a robust and accurate method (RATES) to compute direct and indirect trust between the network nodes. In RATES model, to compute the direct trust, we improve the Bayesian formula by applying the chaining of trust values, a local reward, a local penalty and a flexible global penalty based on the variation of successful interactions, failures and misbehaviors frequency. RATES thus manages to obtain a direct trust value that is accurate and representative of the node behavior in the network. In addition, we introduce the establishment of a simple confidence interval to filter out biased recommendations sent by malicious nodes to disrupt the estimation of a node's indirect trust. Mathematical theoretical analysis and evaluation of the simulation results show the best performance of our approach for detecting on-off attacks, bad-mouthing attacks and persistent attacks compared to the other existing approaches.


Author(s):  
Smriti Joshi ◽  
Anant Kr. Jayswal

Energy efficiency is the kernel issue in the designing of wireless sensor network(WSN) MAC protocols. Energy efficiency is a major consideration while designing wireless sensor network nodes. Most sensor network applications require energy autonomy for the complete lifetime of the node, which may span up to several years. These energy constraints require that the system be built such that Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. Each component consumes minimum possible power, ensure the average successful transmission rate, decrease the data packet average waiting time, and reduce the average energy consumption. Influencing by the design principles of traditional layered protocol stack, current MAC protocol designing for wireless sensor networks (WSN) seldom takes load balance into consideration, which greatly restricts WSN lifetime. As a novel Forwarding Election-based MAC protocol, is presented to prolong WSN lifetime by means of improving energy efficiency and enhancing load balance.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


Sign in / Sign up

Export Citation Format

Share Document