scholarly journals Recommendations for the Selection, Stabilization, and Compaction of Soil for Rammed Earth Wall Construction

2010 ◽  
Vol 5 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Steve Burroughs

Rammed earth possesses environmental advantages over most other competing construction materials. However, if it is to be more routinely used in the construction of modern, sustainable buildings, its material properties and production processes must be properly quantified. This paper proposes practical recommendations for soil selection, stabilizer treatment, and on-site compaction for rammed earth, based on a recent set of 219 stabilization experiments. The purpose of the recommendations is to maximize the probability of constructing rammed earth walls that meet or exceed a compressive strength criterion of 2 MPa. The recommendations cover: (1) Quantifying the natural soil properties of linear shrinkage and texture in a staged sequence in order to identify suitable soils to stabilize (and to reject unsuitable soils); (2) Quantifying the amounts of cement and/or lime to be added to the selected soil according to the values of soil properties measured; and (3) Quantifying the forces involved in on-site compaction of stabilized soil (for both manual and pneumatic ramming), and relating these to laboratory-based test standards. Although the recommendations need to be tested and verified/refined using new data, their initial application to rammed earth construction situations in Australia indicates that they have predictive utility. Further research will also indicate the degree of applicability of the recommendations to the production of compressed earth bricks.

2020 ◽  
Vol 12 (7) ◽  
pp. 2830
Author(s):  
Jacinto Canivell ◽  
Juan Jesús Martín-del-Río ◽  
Raúl M. Falcón ◽  
Carlos Rubio-Bellido

Unlike other common contemporary construction materials such as concrete, mortars, or fired clay bricks, which are widely supported by international standards and regulations, building with rammed earth is barely regulated. Furthermore, its quality control is usually problematic, which regularly encourages the rejection of this technique. In the literature, many authors have suggested ways to safely build a rammed earth wall, but only a few of them have delved into its quality control before and during the construction process. This paper introduces a preliminary methodology and establishes unified criteria, based in a statistical analysis, for both the production and the quality control of this constructive technique in cases dealing with both samples and walls.


2021 ◽  
Vol 11 (8) ◽  
pp. 3545
Author(s):  
Fernanda Andreola ◽  
Isabella Lancellotti ◽  
Paolo Pozzi ◽  
Luisa Barbieri

This research reports results of eco-compatible building material obtained without natural raw materials. A mixture of sludge from a ceramic wastewater treatment plant and glass cullet from the urban collection was used to obtain high sintered products suitable to be used as covering floor/wall tiles in buildings. The fired samples were tested by water absorption, linear shrinkage, apparent density, and mechanical and chemical properties. Satisfactory results were achieved from densification properties and SEM/XRD analyses showed a compact polycrystalline microstructure with albite and wollastonite embedded in the glassy phase, similar to other commercial glass-ceramics. Besides, the products were obtained with a reduction of 200 °C with respect to the firing temperatures of commercial ones. Additionally, the realized materials were undergone to leaching test following Italian regulation to evaluate the mobility of hazardous ions present into the sludge. The data obtained verified that after thermal treatment the heavy metals were immobilized into the ceramic matrix without further environmental impact for the product use. The results of the research confirm that this valorization of matter using only residues produces glass ceramics high sintered suitable to be used as tile with technological properties similar or higher than commercial ones.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ubido Oyem Emmanuel ◽  
Igwe Ogbonnaya ◽  
Ukah Bernadette Uche

AbstractInvestigation into the cause of road failure has been carried out along a 60 km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12 to 61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1–52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2–35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17–43.9%, maximum dry density ranges from 1.51–1.74 g /cm3, specific gravity ranges from 2.52–2.64 and CBR between 3 and 12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20–138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20 m – 240 m along the profile to a depth of 7.60 m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m − 120 m along the profile to a depth of 15 m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Meghdad Jourgholami ◽  
Azadeh Khoramizadeh ◽  
Angela Lo Monaco ◽  
Rachele Venanzi ◽  
Francesco Latterini ◽  
...  

Engineering applications can be used to mitigate the adverse effects of soil compaction and amend compacted soils. Previous literature has highlighted the beneficial effects of interventions such as litter mulching and incorporation on skid trails. However, little is known about the effectiveness of these alternatives in restoring forest soil quality after forest logging. The objective of this study was to properly elucidate the effects of the above mentioned soil protection methods, litter incorporation before skidding (LI) and litter mulching after skidding (LM), on the recovery of compacted soil’s physico-chemical and biological properties on skid trails over a 2-year period in the Hyrcanian forests of Iran to identify the best option for restoration intervention. The litter used in both methods consisted of dried leaves of the hornbeam and maple tree in three intensities of 3, 6, and 9 Mg ha−1. The results showed that the application of both methods (LI and LM) significantly improved the soil properties when compared to the untreated skid trail. Results showed that the recovery values of soil properties in the LI treatments were significantly higher than those of the LM. The recovery values of soil properties by 6 and 9 Mg ha−1 were significantly higher than those of 3 Mg ha−1, while the differences were not significant between 6 and 9 Mg ha−1. Our findings showed that soil properties were partially recovered (70–80%) over a 2-year period from treatment, compared to untreated, but the full recovery of soil properties required more time to return to the pre-harvest value. Overall, the results of this study demonstrated that the application of soil protection methods accelerates the process of recovering soil properties much faster than natural soil recovery, which can take more than 20 years in these forests.


2015 ◽  
Vol 58 (4) ◽  
pp. 314-323 ◽  
Author(s):  
J.J. Correia da Silva ◽  
João P.B. Pereira ◽  
Jorge Sirgado

Author(s):  
Valmiki K Sooklal

In developing countries where resources are limited, the task of providing shelter for poverty stricken communities that are already in dire need of basic amenities can be a daunting one. This paper proposes a solution to this housing issue in the form of a modular home construction kit. These kits will provide such communities with a tool for sustainably constructing their own dwellings using local manpower combined with the natural resources available on site. The technique is based on the rammed earth principle in which the raw material for the construction process is primarily the natural soil present at the targeted location. This result in considerable savings in terms of sourcing and transporting costs of building materials typically used in traditional constructions methods. In addition, heavy or powered equipment is not needed for this construction technique making it a viable option for places where an electrical power supply or fuel source is not available.The project is part of a service-learning program, recently introduced at the University of Colorado at Colorado Springs to afford students an opportunity to work on a multidisciplinary team while using their engineering knowledge to provide solutions to real world problems. The student team working on the project has been involved in developing all the necessary procedures for assessment of the location’s soil type as well as the design and sourcing of the kit components. They will also be required to develop the necessary instructional and training material to allow for assembly of the kit components and the implementation of the technique to produce a finished structure (excluding the roof).


2017 ◽  
Vol 21 (6 Part B) ◽  
pp. 2919-2930
Author(s):  
Vesna Lovec ◽  
Milica Jovanovic-Popovic ◽  
Branislav Zivkovic

Traditional Vojvodina house represents an important part of the building stock of the northern Serbian province of Vojvodina. The research examines the thermal transmittance of the walls of rammed earth, which is the basic structural and fa?ade element of traditional Vojvodina house, in two ways: by calculations in accordance with Serbian regulations and by measuring in situ. Parameters obtained from the measurements are compared with the calculated values for the three typical traditional Vojvodina rammed earth single family residential houses. The comparison between the values of the heat transfer coefficient, obtained by the calculation, and the results determined by in situ measurements show significant differences. It indicates that the thermal characteristics are better than calculated ones according to national regulations, but at the same time that, due to the complexity of the rammed earth walls and differences in the rammed earth structures, the results differ from case to case and can not be standardized.


Sign in / Sign up

Export Citation Format

Share Document