scholarly journals COMPLETE STREETS & LIVABLE CENTERS

2011 ◽  
Vol 6 (3) ◽  
pp. 21-32 ◽  
Author(s):  
Robin Holzer ◽  
Zakcq Lockrem

INTRODUCTION In recent years, Houston has made great strides in green building, moving into the top ten nationally on both LEED certified and Energy Star rated structures. At the same time, fewer steps have been taken to address transportation, which accounts for one third of U.S. greenhouse gas emissions. 3 To achieve greater sustainability, architects, planners, and developers must take the space between buildings into greater account. As in other metropolitan areas, Houston's commercial developers and property owners are continuing to embrace green building standards, particularly the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) standard for new construction. As a result, new offices, schools, institutions, and commercial buildings are increasingly efficient, incorporating a full array of technologies to minimize energy use and greenhouse gas emissions. These are major steps in the right direction, but we can and must do more. Individuals spend only part of their day in any given home, office, school, or other facility. They must also travel between other locations. According to the U.S. Environmental Protection Agency, in 2009, approximately one-third of GHG emissions came from buildings and another one-third came from transportation. If we are to reduce total GHG emissions, it will not be enough to address only buildings. The (lack of) proximity of these daily destinations to one another is a significant driver of the energy consumption and emissions of travel. Further, the quality of the public infrastructure between destinations directly affects which travel modes are available. Destinations that are well-connected by wide sidewalks, bike lanes, or transit—complete streets—are likely to be reached on foot, bike, or transit. Distances that are connected only by auto-oriented roads or highways are likely to be traversed in cars. LEED for New Construction offers 17 (out of 110) points that are related to location of a building or the transportation options serving it. 4 However, none of these points is mandatory and in many cases they can be earned too easily. For example, points are available if there is any bus or other transit stop within 1/4 mile of a project, without regard for the frequency that buses stop there or whether the connectivity that would allow someone to get from the stop to the project site exists. In order to create greener buildings, it behooves developers and others making site-selection decisions to locate new buildings in or near existing activity centers, to take advantage of proximity to other destinations, and to help enable transit service, which works best where there's density. Getting the location right is especially important for new public facilities, including civic buildings, health clinics, schools, community and senior centers, etc. Second, it behooves owners of existing buildings and local jurisdictions to work together to retrofit streets (in the same way one might retrofit an older building) to make them complete, adding safe and convenient facilities for pedestrians and cyclists. By increasing density and completing street infrastructure, we can reinforce existing locations into livable centers, increasing travel options and reducing auto dependence.

2009 ◽  
Vol 20 (4) ◽  
pp. 533-551 ◽  
Author(s):  
R Saidur ◽  
MA Sattar ◽  
H.H. Masjuki ◽  
M.Y. Jamaluddin

This paper presents an analysis of the greenhouse gas (GHG) emissions from refrigeration equipment. The refrigeration equipments use refrigerants such as chlorofluorocarbons (CFCs) and hydrofluorocarbons HFCs, which are believed to contribute the ozone depletion and global warming. Refrigeration equipment thus contributes indirectly through emission due to electricity consumption and directly due to the emission of refrigerants. Greenhouse gas emissions resulting from the burning of fossil fuels are quantified and presented in this paper. The calculation was carried out based on emissions per unit electricity generated and the type of fuel used. The direct emission of refrigerant was calculated based on emission factor and according to the procedure of Environmental Protection Agency (EPA), USA. A study was conducted to evaluate the refrigerant losses to the atmosphere and the CO2 emission from fossil fuels to generate power to run the refrigeration and air-conditioning systems. In this paper, total appliance annual energy consumption by refrigerator-freezer and air conditioner as well as emission has been estimated for a period of 19 years (1997–2015) using the survey data. Energy savings and emission reductions achievable by raising thermostat set point temperature have been calculated for a period of 10 (i.e. 2005–2015) years.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3784
Author(s):  
Piotr Gołasa ◽  
Marcin Wysokiński ◽  
Wioletta Bieńkowska-Gołasa ◽  
Piotr Gradziuk ◽  
Magdalena Golonko ◽  
...  

The relationship between agriculture and climate change is two-sided. Agriculture is the branch of the economy most affected by the ongoing processes. It is also a large emitter of greenhouse gases and there are more and more voices about the need to reduce emissions. The purpose of the study was, based on FADN (Farm Accountancy Data Network) data, to determine the structure of greenhouse gas emissions in farms and to identify types of farms where it is possible to reduce GHG (greenhouse gas) emissions through better energy use. The emission volume was determined on the basis of the IPCC (Intergovernmental Panel on Climate Change) methodology modified for the FADN data. The emissions related to the production of energy were found to be of minor importance compared to other emission sources. Only in the horticultural crop type is the emission from the Energy section the dominant stream of GHG emission. The greatest emissions come from livestock production. Therefore, the emphasis on reducing emissions should not be placed on the Energy sector because, except for the type of horticultural farm, there is not much potential for reduction. The introduction of taxes for GHG emissions at the level of 27.31 EUR/t would reduce farm income from 21% for the type of field crops to 40% for the type of herbivorous animals. The exception is low-emission permanent crops, where the decrease in income would be only 3.85%.


2019 ◽  
Vol 11 (17) ◽  
pp. 4763
Author(s):  
Sylvia Gonzalez-Gorman ◽  
Sung-Wook Kwon ◽  
Dennis Patterson

In this study, we examine municipal efforts to reduce greenhouse gas emissions (GHG) by focusing on emissions from vehicular sources. We compare what different cities have done to address the problem of GHG emissions from vehicles by using atmospheric data to assess the impact policy efforts have had on actual GHGs. We focus on an area overlooked in the literature, U.S. cities on the U.S.-Mexico transborder region. Using GHG vehicular emissions data from the Center for Neighborhood Technology (CNT) and an ordinary least square model, this research foundcities have reduced levels of GHGs, especially when municipal efforts are supported by state policies to reduce GHG emissions. While GHG in general are transboundary and a global issue by nature, communities in the U.S. border region are directly impacted by vehicular emissions due to cross-border trade that is not prevalent in interior communities. However, one of the main limitations in this type of study is the lack of reportable environmental data for less populated cities on the U.S.-Mexico border. Future studies need to develop alternative approaches to sustainability that could provide a more nuanced examination of some of the challenges or success in the U.S. transborder region.


Author(s):  
S.F. Ledgard ◽  
C. Basset-Mens ◽  
S. Mclaren ◽  
M. Boyes

Assessment of energy use and greenhouse gas emissions associated with dairy products needs to account for the whole life cycle of the products, particularly with the debate about "food miles"(the transportation of product from producer to consumer). A life cycle assessment (LCA) of an average NZ dairy farm for 2005 showed that total energy use per kg milk from the "cradle-tomilk- in-the-vat" was 45-65% of that from EU farms. The greenhouse gas (GHG) emissions or carbon footprint showed similar relative trends although differences were smaller due, at least in part, to lower methane efficiency from lower-producing NZ cows. Energy use associated with shipping dairy product (e.g. cheese) from NZ to UK is equivalent to about one-quarter of the on-farm use. Even when added together, the energy use from the NZ farm and from shipping would still be less than onfarm energy use for the EU farms. However, this is affected by intensification and the Dexcel Resource Efficient Dairying trial showed that increasing maize silage use, and nitrogen fertiliser use in particular, increased the energy use and GHG emissions per kg milk by up to 190% and 23%, respectively. Thus, the trend for intensification on NZ dairy farms means that our comparative advantage with EU farms is diminishing. A focus on improved farm system practices and integration of mitigation options is required to reverse this trend. Keywords: food miles, greenhouse gases, energy, life cycle assessment, milk, New Zealand, efficiency


Author(s):  
Robert Brinkmann ◽  
Sandra Jo Garren

In recent years, the United States has struggled to develop a comprehensive policy for climate change and concomitant greenhouse gas emissions that addresses the current scientific thinking on the topic. The absence of any clear legislative or executive approach dominated national discussions and the court system was used to litigate a variety of issues associated with global warming. This paper synthesizes actions taken in the three branches of government prior to and immediately following the Obama election. In the Judicial branch, several branches of law have been used to force government and private parties to reduce greenhouse gas emissions. Based on the historic greenhouse gas lawsuit, Massachusetts et al. v. the United States Environmental Protection Agency (U.S. EPA), and under the direction of the Obama administration, the U.S. EPA has taken significant action to regulate greenhouse gases. In the legislative branch, a comprehensive energy and climate bill passed the House of Representatives and comparable and alternate energy and climate bills were debated in the Senate indicating hope for legislation in the 111th Congress. However, these bills proved to be unsuccessful, therefore leaving the U.S. EPA and the courts the only options for national climate policy in the near future.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Muhammad Imran ◽  
Orhan Ozcatalbas

AbstractThis study aimed to model energy use, energy efficiency, and greenhouse gas emissions in rain-fed wheat production by using a nonparametric data envelopment analysis (DEA) method. Data were collected through face-to-face interviews with 140 wheat farmers in 4 districts of Antalya Province. The energy inputs (independent variables) were human labor, seeds, chemical fertilizers, herbicides, and diesel fuel, and the energy output was the dependent variable. The results showed that the average energy consumption and the output energy for the studied wheat production system were 21. 07GJ ha−1 and 50. 99 GJ ha−1, respectively, and the total GHG emissions were calculated to be 592.12 kg CO2eq ha−1. Chemical fertilizer has the highest share of energy consumption and total GHG emissions. Based on the results from DEA, the technical efficiency of the farmers was found to be 0.81, while pure technical and scale efficiencies were 0.65 and 0.76, respectively. The results also highlighted that there is a potential opportunity to save approximately 14% (2.93 GJ ha−1) of the total energy consumption and consequently a 17% reduction in GHG emissions by following the optimal amounts of energy consumption while keeping the wheat yield constant. Efficient use of energy and reduction in GHG emissions will lead to resource efficiency and sustainable production, which is the main aim of the green economy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2021 ◽  
Author(s):  
Ain Kull ◽  
Iuliia Burdun ◽  
Gert Veber ◽  
Oleksandr Karasov ◽  
Martin Maddison ◽  
...  

<p>Besides water table depth, soil temperature is one of the main drivers of greenhouse gas (GHG) emissions in intact and managed peatlands. In this work, we evaluate the performance of remotely sensed land surface temperature (LST) as a proxy of greenhouse gas emissions in intact, drained and extracted peatlands. For this, we used chamber-measured carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) data from seven peatlands in Estonia collected during vegetation season in 2017–2020. Additionally, we used temperature and water table depth data measured in situ. We studied relationships between CO<sub>2</sub>, CH<sub>4</sub>, in-situ parameters and remotely sensed LST from Landsat 7 and 8, and MODIS Terra. Results of our study suggest that LST has stronger relationships with surface and soil temperature as well as with ecosystem respiration (R<sub>eco</sub>) over drained and extracted sites than over intact ones. Over the extracted cites the correlation between R<sub>eco</sub> CO<sub>2</sub> and LST is 0.7, and over the drained sites correlation is 0.5. In natural sites, we revealed a moderate positive relationship between LST and CO<sub>2</sub> emitted in hollows (correlation is 0.6) while it is weak in hummocks (correlation is 0.3). Our study contributes to the better understanding of relationships between greenhouse gas emissions and their remotely sensed proxies over peatlands with different management status and enables better spatial assessment of GHG emissions in drainage affected northern temperate peatlands.</p>


Sign in / Sign up

Export Citation Format

Share Document