scholarly journals Rating the potential suitability of habitat in Michigan stream reaches for Arctic grayling

Author(s):  
Cameron Goble ◽  
Troy G. Zorn ◽  
Nancy A. Auer ◽  
J. Marty Holtgren ◽  
Dan W. Mays ◽  
...  

Arctic Grayling Thymallus arcticus were historically found throughout the northern half of Michigan’s Lower Peninsula but were extirpated from the state by 1936. By addressing issues from previous reintroduction efforts and employing instream rearing (Remote Site Incubator) approach to stocking, numerous partners are working to reintroduce Arctic Grayling to Michigan with hopes of reestablishing self-sustaining populations. With over 47,000 km of coldwater stream habitat in the state and limited numbers of eggs for reintroductions, a prioritization framework was needed to provide a standardized, fine-scale method for rating suitability of streams for reintroductions. Through facilitated discussions with stakeholders and experts, we developed an overall prioritization framework for rating Michigan streams with components evaluating a reach’s thermal, instream habitat, biological, and connectivity characteristics.  Within the context of this broader framework, we developed the habitat rating component for assessing suitability of instream conditions for egg, fry, juvenile, and adult life stages of Arctic Grayling. Life-stage specific habitat metrics and scoring criteria from this effort were used to rate habitat conditions for 45 reaches in tributaries of Michigan’s Manistee River, enabling identification of reaches likely having instream habitat most suitable for Arctic Grayling. Numbers of reaches meeting or exceeding 60%, 70%, and 80% of the maximum score for overall habitat suitability were 31, 8, and 1. Upon completion of the fish assemblage and connectivity components, the prioritization framework and habitat rating process described here will be used for comparing suitability among streams throughout the historic range of Arctic Grayling in Michigan and guiding reintroduction efforts. Though it will take considerable time before instream habitat suitability criteria can be evaluated for all life stages of Arctic Grayling in Michigan, the collaborative stream prioritization framework developed for Arctic Grayling reintroduction can be readily adapted to reintroduction efforts for other species elsewhere.

2017 ◽  
Vol 4 (3) ◽  
pp. 160815 ◽  
Author(s):  
Bertanne Visser ◽  
Denis S. Willett ◽  
Jeffrey A. Harvey ◽  
Hans T. Alborn

The ability to synthesize lipids is critical for an organism’s fitness; hence, metabolic pathways, underlying lipid synthesis, tend to be highly conserved. Surprisingly, the majority of parasitoids deviate from this general metabolic model by lacking the ability to convert sugars and other carbohydrates into lipids. These insects spend the first part of their life feeding and developing in or on an arthropod host, during which they can carry over a substantial amount of lipid reserves. While many parasitoid species have been tested for lipogenic ability at the adult life stage, it has remained unclear whether parasitoid larvae can synthesize lipids. Here we investigate whether or not several insects can synthesize lipids during the larval stage using three ectoparasitic wasps (developing on the outside of the host) and the vinegar fly Drosophila melanogaster that differ in lipogenic ability in the adult life stage. Using feeding experiments and stable isotope tracing with gas chromatography/mass spectrometry, we first confirm lipogenic abilities in the adult life stage. Using topical application of stable isotopes in developing larvae, we then provide clear evidence of concurrence in lipogenic ability between larval and adult life stages in all species tested.


mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Liuhao Wang ◽  
Jie Wu ◽  
Kai Li ◽  
Ben M. Sadd ◽  
Yulong Guo ◽  
...  

ABSTRACT Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen’s gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis. We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella, Snodgrassella, and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus, Lactococcus, and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance. IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.


2019 ◽  
Vol 30 (5) ◽  
pp. 1273-1282 ◽  
Author(s):  
Shannon R Kelleher ◽  
Aimee J Silla ◽  
Petri T Niemelä ◽  
Niels J Dingemanse ◽  
Phillip G Byrne

AbstractNutritional conditions experienced during development are expected to play a key role in shaping an individual’s behavioral phenotype. The long term, irreversible effects of nutritional conditions on behavioral variation among and within individuals remains largely unexplored. This study aimed to investigate how long-term carotenoid availability (representing low vs. high quality nutritional conditions) during both larval and adult life stages influences the expression of among-individual variation (animal personality) and within-individual variation (behavioral plasticity). We tested for personality and plasticity along the exploration/avoidance behavioral axis in the Southern Corroboree frog (Pseudophryne corroboree). We predicted that treatment groups receiving carotenoids during early development would be more exploratory and have greater among- and within-individual variation compared with individuals that did not receive carotenoids (i.e., silver spoon hypothesis). Superior nutritional conditions experienced during development are expected to provide individuals with resources needed to develop costly behaviors, giving them an advantage later in life irrespective of prevailing conditions. Unexpectedly, frogs that did not receive carotenoids as larvae expressed greater among-individual variance in exploration behavior. Additionally, frogs that did not receive carotenoids at either life stage displayed greater within-individual variance. Our findings provide no support for the silver spoon hypothesis but suggest that inconsistent nutritional conditions between life stages may adversely affect the development of behavioral phenotypes. Overall, our results indicate that early and late life nutritional conditions affect the development of personality and plasticity. They also highlight that nutritional effects on behavior may be more complex than previously theorized.


Author(s):  
Charlotte Scott

Beginning with an exploration of the role of the child in the cultural imagination, Chapter 1 establishes the formative and revealing ways in which societies identify themselves in relation to how they treat their children. Focusing on Shakespeare and the early modern period, Chapter 1 sets out to determine the emotional, symbolic, and political registers through which children are depicted and discussed. Attending to the different life stages and representations of the child on stage, this chapter sets out the terms of the book’s enquiry: what role do children play in Shakespeare’s plays; how do we recognize them as such—age, status, parental dynamic—and what are the effects of their presence? This chapter focuses on how the early moderns understood the child, as a symbolic figure, a life stage, a form of obligation, a profound bond, and an image of servitude.


2015 ◽  
Vol 27 (1) ◽  
pp. 131-156
Author(s):  
RONGSONG LIU ◽  
GERGELY RÖST ◽  
STEPHEN A. GOURLEY

Intra-specific competition in insect and amphibian species is often experienced in completely different ways in their distinct life stages. Competition among larvae is important because it can impact on adult traits that affect disease transmission, yet mathematical models often ignore larval competition. We present two models of larval competition in the form of delay differential equations for the adult population derived from age-structured models that include larval competition. We present a simple prototype equation that models larval competition in a simplistic way. Recognising that individual larvae experience competition from other larvae at various stages of development, we then derive a more complex equation containing an integral with a kernel that quantifies the competitive effect of larvae of ageāon larvae of agea. In some parameter regimes, this model and the famous spruce budworm model have similar dynamics, with the possibility of multiple co-existing equilibria. Results on boundedness and persistence are also proved.


2005 ◽  
Vol 74 (3) ◽  
pp. 254-263 ◽  
Author(s):  
G.K. Bielmyer ◽  
K.V. Brix ◽  
T.R. Capo ◽  
M. Grosell

2014 ◽  
Vol 25 ◽  
pp. 43-46 ◽  
Author(s):  
Karen Villanueva ◽  
Matthew Knuiman ◽  
Andrea Nathan ◽  
Billie Giles-Corti ◽  
Hayley Christian ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Selene Cansino ◽  
Frine Torres-Trejo ◽  
Cinthya Estrada-Manilla ◽  
Adriana Flores-Mendoza ◽  
Gerardo Ramírez-Pérez ◽  
...  

The aim of the study was to identify nutrients that have the ability to impact brain functioning and, as a consequence, influence episodic memory. In particular, we examined recollection, the ability to recall details of previous experiences, which is the episodic memory process most affected as age advances. A sample of 1,550 healthy participants between 21 and 80 years old participated in the study. Nutritional intake was examined through a food frequency questionnaire and software developed to determine the daily consumption of 64 nutrients based on food intake during the last year. Recollection was measured through a computerized source memory paradigm. First, we identified which nutrients influence recollection across the entire adult life span. Then, moderator analyses were conducted by dividing the sample into young (21–40 years old), middle-aged (41–60 years old) and older (61–80 years old) adults to establish in which life stage nutrients influence episodic memory. Across the adult life span, recollection accuracy was shown to benefit from the intake of sodium, heme, vitamin E, niacin, vitamin B6, cholesterol, alcohol, fat, protein, and palmitic, stearic, palmitoleic, oleic, gadoleic, alpha-linoleic and linoleic acid. The effects of energy, maltose, lactose, calcium and several saturated fatty acids on recollection were modulated by age; in older adults, the consumption of these nutrients negatively influenced episodic memory performance, and in middle-aged adults, only lactose had negative effects. Several brain mechanisms that support episodic memory were influenced by specific nutrients, demonstrating the ability of food to enhance or deteriorate episodic memory.


Sign in / Sign up

Export Citation Format

Share Document