Modelling the Compliance of In-Situ Rock - a New Formulation for the Equation of State

Author(s):  
S. V. Zatsepin ◽  
S. Crampin
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Lütgert ◽  
J. Vorberger ◽  
N. J. Hartley ◽  
K. Voigt ◽  
M. Rödel ◽  
...  

AbstractWe present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ($$155 \pm 20$$ 155 ± 20 ) GPa and ($$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.


2017 ◽  
Vol 48 (3) ◽  
pp. 616-633 ◽  
Author(s):  
G. Farina ◽  
S. Alvisi ◽  
M. Franchini

This paper presents a procedure for estimating discharge in a river cross-section based on the combined use of dimensionless isovels and point velocity measurements. Specifically, taking the Biot–Savart law on the magnetic field induced by an electric current in a wire as their basis as already done by other researchers, the authors propose a new formulation of the relationship characterizing the effect of the wetted perimeter on the range of velocities in a cross-section in order to take explicit account of roughness, expressed by means of Manning's coefficient. Once appropriately nondimensionalized, the isoeffect contours can be read as dimensionless isovels. Assuming in situ velocity measurements are available, discharge at a cross-section can be computed using two different methods. The proposed procedure was applied to six case studies characterized by river cross-sections which differed greatly from one another. The results show that the two methods proposed for estimating discharge lead to equivalent outcomes, and in all the cases the procedure as a whole enables a sufficiently accurate estimation of discharge, even when it is based on a limited number of velocity measurements or on the measurement of maximum surface-water velocity alone.


Author(s):  
Olga Ermakova ◽  
Javier López-Solano ◽  
Roman Minikayev ◽  
Stefan Carlson ◽  
Agata Kamińska ◽  
...  

Lanthanum orthovanadate (LaVO4) is the only stable monazite-type rare-earth orthovanadate. In the present paper the equation of state of LaVO4is studied usingin situhigh-pressure powder diffraction at room temperature, andab initiocalculations within the framework of the density functional theory. The parameters of a second-order Birch–Murnaghan equation of state,i.e.those fitted to the experimental and theoretical data, are found to be in perfect agreement – in particular, the bulk moduli are almost identical, with values of 106 (1) and 105.8 (5) GPa, respectively. In agreement with recent reported experimental data, the compression is shown to be anisotropic. Its nature is comparable to that of some other monazite-type compounds. The softest compression direction is determined.


2015 ◽  
Vol 18 (02) ◽  
pp. 158-170 ◽  
Author(s):  
Anna Nissen ◽  
Zhouyuan Zhu ◽  
Anthony Kovscek ◽  
Louis Castanier ◽  
Margot Gerritsen

Summary We demonstrate the effectiveness of a non-Arrhenius kinetic upscaling approach for in-situ-combustion processes, first discussed by Kovscek et al. (2013). Arrhenius reaction terms are replaced with equivalent source terms that are determined by a work flow integrating both laboratory experiments and high-fidelity numerical simulations. The new formulation alleviates both stiffness and grid dependencies of the traditional Arrhenius approach. Consequently, the computational efficiency and robustness of simulations are improved significantly. In this paper, we thoroughly investigate the performance of the non-Arrhenius upscaling method compared with Arrhenius kinetics. We investigate robustness by considering grid effects and sensitivity to heterogeneity. Performance improvements of the new kinetic upscaling approach compared with traditional Arrhenius kinetics are demonstrated through numerical experiments in one and two dimensions for both homogeneous- and heterogeneous-permeability fields.


2012 ◽  
Vol 16 (10) ◽  
pp. 3607-3620 ◽  
Author(s):  
C. Albergel ◽  
G. Balsamo ◽  
P. de Rosnay ◽  
J. Muñoz-Sabater ◽  
S. Boussetta

Abstract. In situ soil moisture data from 122 stations across the United States are used to evaluate the impact of a new bare ground evaporation formulation at ECMWF. In November 2010, the bare ground evaporation used in ECMWF's operational Integrated Forecasting System (IFS) was enhanced by adopting a lower stress threshold than for the vegetation, allowing a higher evaporation. It results in more realistic soil moisture values when compared to in situ data, particularly over dry areas. Use was made of the operational IFS and offline experiments for the evaluation. The latter are based on a fixed version of the IFS and make it possible to assess the impact of a single modification, while the operational analysis is based on a continuous effort to improve the analysis and modelling systems, resulting in frequent updates (a few times a year). Considering the field sites with a fraction of bare ground greater than 0.2, the root mean square difference (RMSD) of soil moisture is shown to decrease from 0.118 m3 m−3 to 0.087 m3 m−3 when using the new formulation in offline experiments, and from 0.110 m3 m−3 to 0.088 m3 m−3 in operations. It also improves correlations. Additionally, the impact of the new formulation on the terrestrial microwave emission at a global scale is investigated. Realistic and dynamically consistent fields of brightness temperature as a function of the land surface conditions are required for the assimilation of the SMOS data. Brightness temperature simulated from surface fields from two offline experiments with the Community Microwave Emission Modelling (CMEM) platform present monthly mean differences up to 7 K. Offline experiments with the new formulation present drier soil moisture, hence simulated brightness temperature with its surface fields are larger. They are also closer to SMOS remotely sensed brightness temperature.


2018 ◽  
Vol 45 (10) ◽  
pp. 995-1001 ◽  
Author(s):  
Masayuki Nishi ◽  
Jun Tsuchiya ◽  
Takeshi Arimoto ◽  
Sho Kakizawa ◽  
Takehiro Kunimoto ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4274
Author(s):  
Gabrielle B. Novais ◽  
Stefane dos Santos ◽  
Robertta J. R. Santana ◽  
Rose N. P. Filho ◽  
John L. S. Cunha ◽  
...  

Spinal Cord Injury (SCI) promotes a cascade of inflammatory events that are responsible for neuronal death and glial scar formation at the site of the injury, hindering tissue neuroregeneration. Among the main approaches for the treatment of SCI, the use of biomaterials, especially gelatin methacryloyl (GelMA), has been proposed because it is biocompatible, has excellent mechanical properties, favoring cell adhesion and proliferation. In addition, it can act as a carrier of anti-inflammatory drugs, preventing the formation of glial scars. The present work presents the development and in situ application of a light-curing formulation based on GelMA containing a natural extract rich in anti-inflammatory, antioxidant and neuroprotective substances (hydroalcoholic extract of red propolis—HERP) in an experimental model of SCI in rats. The formulations were prepared and characterized by time of UV exposition, FTIR, swelling and degradation. The hydrogels containing 1 mg/mL of HERP were obtained by the exposure to UV radiation of 2 μL of the formulation for 60 s. The locomotor evaluation of the animals was performed by the scale (BBB) and demonstrated that after 3 and 7 days of the injury, the GelMA-HERP group (BBB = 5 and 7) presented greater recovery compared to the GelMA group (BBB = 4 and 5). Regarding the inflammatory process, using histomorphological techniques, there was an inflammation reduction in the groups treated with GelMA and GelMA-HERP, with decreases of cavitation in the injury site. Therefore, it is possible to conclude that the use of GelMA and GelMA-HERP hydrogel formulations is a promising strategy for the treatment of SCI when applied in situ, as soon as possible after the injury, improving the clinical and inflammatory conditions of the treated animals.


2008 ◽  
Vol 76 (2) ◽  
pp. 219-246 ◽  
Author(s):  
Morten R. Kristensen ◽  
Margot G. Gerritsen ◽  
Per G. Thomsen ◽  
Michael L. Michelsen ◽  
Erling H. Stenby

Sign in / Sign up

Export Citation Format

Share Document