Quantum Nonlocal Action and Inertial Mass from Mach's Conjecture.

1989 ◽  
Vol 2 (3) ◽  
pp. 237-238
Author(s):  
R. B. Driscoll
2021 ◽  
pp. 112791
Author(s):  
Mayur Birla ◽  
Junyu Zou ◽  
Zahra Afkhami ◽  
Xiyu Duan ◽  
Haijun Li ◽  
...  

1997 ◽  
Vol 12 (07) ◽  
pp. 1373-1384 ◽  
Author(s):  
P. R. Silva

An extension of the MIT bag model, developed to describe the strong interaction inside the hadronic matter (nucleons), is proposed as a means to account for the confinement of matter in the universe. The basic hypotheses of the MIT bag model are worked out in a very simplified way and are also translated in terms of the gravitational force. We call the nucleon "microcosmos" and the bag-universe "macrocosmos." We have found a vacuum pressure of 10-15 atm at the boundary of the bag-universe as compared with a pressure of 1029 atm at the boundary of the nucleon. Both universes are also analyzed in the light of Sciama's theory of inertia, which links the inertial mass of a body to its interaction with the rest of the universe. One of the consequences of this work is that the Weinberg mass can be interpreted as a threshold mass, namely the mass where the frequency of the small oscillations of a particle coupled to the universe matches its de Broglie frequency. Finally, we estimate an averaged density of matter in the universe, corresponding to [Formula: see text] of the critical or closure density.


2018 ◽  
Vol 39 (3) ◽  
pp. 749-760 ◽  
Author(s):  
Zhi-Hao Wang ◽  
Hui Gao ◽  
Bu-qiao Fan ◽  
Zheng-Qing Chen

It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an inertial mass damper. This paper extends previous studies to investigate the effect of the cable sag on the efficiency of an inertial mass damper. The general dynamic characteristics of an inclined sag cable with an inertial mass damper installed close to the cable end are theoretically investigated. The parametric analysis of the inertial mass and the damping coefficient of the inertial mass damper are conducted to evaluate the control performance of the cable with different sags. The results show that the inertial mass damper can alleviate the negative effect induced by the cable sag, and the cable sag can even increase modal damping ratios provided by the inertial mass damper. Sags of stay cables used in actual bridges only affect nearly symmetric vibrations of cables, while having little impact on nearly antisymmetric vibrations. The effect of cable sags will reduce the optimal damping coefficient and inertial mass of the inertial mass damper for the first symmetric mode of the cable.


2019 ◽  
Vol 120 ◽  
pp. 203-220 ◽  
Author(s):  
Hongping Zhu ◽  
Yamin Li ◽  
Wenai Shen ◽  
Songye Zhu

Author(s):  
Ruriko Haraguchi ◽  
Takehiko Asai

This paper introduces the mechanism of a buoy-type wave energy converter (WEC) with a tuned inertial mass (TIM) mechanism. The TIM mechanism consists of a rotational mass and motor connected in series with a tuning spring. While it is common to control the current of the power take-off system, the stiffness of the spring is tuned in addition so that the inertial mass part resonates with the dominant frequency of the wave motion. The method to design the parameters to maximize the power generation capability is introduced and numerical studies for both narrowband and broadband sea states are carried out. It is shown that the proposed device demonstrates better energy harvesting performance compared to the WEC without the TIM mechanism to band-limited stationary random vibration.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2163 ◽  
Author(s):  
Sanghyun Yoon ◽  
Jinhwan Kim ◽  
Kyung-Ho Cho ◽  
Young-Ho Ko ◽  
Sang-Kwon Lee ◽  
...  

In this study, inertial mass-based piezoelectric energy generators with and without a spring were designed and tested. This energy harvesting system is based on the shock absorber, which is widely used to protect humans or products from mechanical shock. Mechanical shock energies, which were applied to the energy absorber, were converted into electrical energies. To design the energy harvester, an inertial mass was introduced to focus the energy generating position. In addition, a spring was designed and tested to increase the energy generation time by absorbing the mechanical shock energy and releasing a decreased shock energy over a longer time. Both inertial mass and the spring are the key design parameters for energy harvesters as the piezoelectric materials, Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics were employed to store and convert the mechanical force into electric energy. In this research, we will discuss the design and performance of the energy generator system based on shock absorbers.


2013 ◽  
Vol 40 (1) ◽  
pp. 135-146
Author(s):  
Aleksandar Tomic

Newton's formula for gravity force gives greather force intensity for atraction of the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary) orbit is the Earth. So appeared paradox which were ignored from competent specialist, because the most important problem, determination of lunar orbit, was inmediately solved sufficiently by mathematical ingeniosity - introducing the Sun as dominant body in the three body system by Delaunay, 1860. On this way the lunar orbit paradox were not canceled. Vujicic made a owerview of principles of mechanics in year 1998, in critical consideration. As an example for application of corrected procedure he was obtained gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. The formula of Vujicic, with our small adaptation, content two type of acceleration - related to inertial mass and related to gravity mass. So appears carried information on the origin of the Moon, and paradox cancels.


Author(s):  
Pawan Joshi ◽  
Utkarsh Kumar ◽  
Sukanta Panda

Nonlocal gravity models are constructed to explain the current acceleration of the universe. These models are inspired by the infrared correction appearing in Einstein–Hilbert action. Here, we develop the Hamiltonian formalism of a nonlocal model by considering only terms to quadratic order in Riemann tensor, Ricci tensor and Ricci scalar. We show how to count degrees of freedom using Hamiltonian formalism including Ricci tensor and Ricci scalar terms. In this model, we have also worked out with a choice of a nonlocal action which has only two degrees of freedom equivalent to GR. Finally, we find the existence of additional constraints in Hamiltonian required to remove the ghosts in our full action. We also compare our results with that of obtained using Lagrangian formalism.


Author(s):  
Mu Xueyu ◽  
Yang Shaojie ◽  
Kong Xiangdong

As a new type of accelerometer, in recent years, the magnetic liquid acceleration sensor has attracted widespread attention worldwide, and related research results have also continued to emerge. This article mainly introduces the theoretical basis and general structure of the magnetic liquid acceleration sensor, and according to the difference of inertial mass, briefly describes the research progress of the magnetic liquid acceleration sensor by national and foreign scholars in recent years and some in existing problems. Finally, suggestions and prospects for the future development trend of the magnetic liquid acceleration sensor are given.


Sign in / Sign up

Export Citation Format

Share Document