Deciphering the core metabolites of fanconi anemia by using a multi-omics composite network

Author(s):  
Xiaobin Xie ◽  
Xiaowei Chen
Keyword(s):  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3372-3372
Author(s):  
Kenneth H. Shain ◽  
Liang Nong ◽  
Danielle Yarde ◽  
Vasco Oliveira ◽  
William S. Dalton

Abstract Abstract 3372 Enhanced expression of the Fanconi Anemia (FA)/BRCA DNA repair pathway correlates with melphalan-resistance in multiple myeloma (MM) cell lines. Continued investigation demonstrated a bortezomib sensitive RelB/p50-mediated regulation of the FA/BRCA pathway contributed to the observed melphalan resistance.(Yarde et al 2009) The FA/BRCA pathway represents a co-dependent DNA damage response pathway involving thirteen loss of function complementation groups cloned from FA patients. The key functional event of this pathway is the interdependent mono-ubiquitination (Ub) of FANCD2 and FANCI (ID complex) by the E3 Ub-ligase activity of the FA core complex a multimer consisting of 8 FA (FANCA, B, C, E, F, G, L and M) and three non-FA proteins (FAAP100, FAAP24 and HES1). Formation of the core complex and mono-Ub of the ID complex appears to revolve around the flexible adapter protein FANCF. Nuclear localization of the core complex components requires binding of FANCA/G and FANCC/E subcomplexes to the C- terminal domain (CTD) and NTD domains of FANCF, respectively. This complex associates with FANCM:FAAP24 at sites of interstand crosslinks (ICL) via the FANCM-binding domain of FANCF, culminating in ID complex mono-Ub, recruitment of BRCA1, BRCA2/FANCD1, FANCJ and FANCN, and homologous recombination (HR) repair. Reduced function of this pathway has been associated with increased genomic instability, cancer susceptibility, and increased sensitivity to DNA cross-linking agents in FA. However, as predicted by the role of the FA/BRCA pathway in DNA repair, enhanced expression of the FA/BRCA pathway has been shown to play an important role in resistance to agents requiring HR for ICL repair. We next examined expression of this pathway in models of resistance to DNA damaging agents not predicted to utilize FA/BRCA activity. We screened 8226/Dox40 doxorubicin resistant and 8226/MR20 mitoxantrone resistant MM cell lines for expression of the 12 FA/BRCA pathway members with quantitative PCR (qPCR) using customized micro-fluidic cards. Interestingly, in these models of topoisomerase (topo) II inhibitor resistance qPCR demonstrated a 2.6 (p<0.05) and 1.7 (p<0.05) fold over expression of FANCF mRNA relative to drug sensitive RPMI8226 cells. Importantly, mRNA expression of other the eleven FA/BRCA pathway constituents was not increased relative to sensitive cells. To further characterize the relationship between FANCF and doxorubicin resistance, we examined mRNA and protein expression of FANCF in RMPI8226, 8226/Dox6 and 8226/Dox40 MM cell lines (representing progressive levels of doxorubicin resistance). FANCF qPCR demonstrated a 2 and 4.7 fold increased in mRNA expression in the 8226/Dox6 and 8226/Dox40 cell lines, respectively (p= 0.103 and p= 0.034) suggesting that increasing expression of FANCF correlated with increasing dox resistance. A similar doxorubicin resistance- dependent increase in FANCF protein was demonstrated by Western blot analysis of these cell lines. Consistent with mRNA results, FANCD2 or FANCG protein levels remained unchanged in the doxorubicin resistant versus sensitive cell lines These observations suggest that FANCF may contribute to topoII inhibitor-mediated DNA double strand break repair, a process that primarily thought to involve non-homologous end joining (NHEJ) independent of the FA/BRCA pathway. To determine if FANCF expression alone could facilitate doxorubicin resistance, pQCXIP-control or pQCXIP-FANCF constructs were expressed in RPMI8226 sensitive MM cells. MTT assays demonstrated a greater than 2 fold resistance to doxorubicin in FANCF over expressing cells at 48 and 96 hours (IC50: 1.33 ×10−6 and 5.3×10−9M) as compared to control cells (3.26×10−6 and 1.13×10−8M). Taken together, these results indicate that the flexible adaptor protein FANCF may participate in doxorubicin resistance independently of other FA/BRCA members. However, future studies will be needed to elucidate the nature of FANCF in doxorubicin resistance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 2062-2070 ◽  
Author(s):  
Cédric S. Tremblay ◽  
Feng F. Huang ◽  
Ouassila Habi ◽  
Caroline C. Huard ◽  
Chantal Godin ◽  
...  

Abstract Fanconi anemia (FA) proteins are thought to play a role in chromosome stability and repair of DNA cross-links; however, these functions may not fully explain the developmental abnormalities and bone marrow failure that are characteristic of FA individuals. Here we associate the FA proteins with the Notch1 developmental pathway through a direct protein-protein interaction between the FA core complex and the hairy enhancer of split 1 (HES1). HES1 interaction with FA core complex members is dependent on a functional FA pathway. Cells depleted of HES1 exhibit an FA-like phenotype that includes cellular hypersensitivity to mitomycin C (MMC) and lack of FANCD2 monoubiquitination and foci formation. HES1 is also required for proper nuclear localization or stability of some members of the core complex. Our results suggest that HES1 is a novel interacting protein of the FA core complex.


DNA Repair ◽  
2006 ◽  
Vol 5 (9-10) ◽  
pp. 1119-1125 ◽  
Author(s):  
Allan M. Gurtan ◽  
Alan D. D’Andrea
Keyword(s):  

2019 ◽  
Vol 42 ◽  
Author(s):  
Guido Gainotti

Abstract The target article carefully describes the memory system, centered on the temporal lobe that builds specific memory traces. It does not, however, mention the laterality effects that exist within this system. This commentary briefly surveys evidence showing that clear asymmetries exist within the temporal lobe structures subserving the core system and that the right temporal structures mainly underpin face familiarity feelings.


Author(s):  
T. Kanetaka ◽  
M. Cho ◽  
S. Kawamura ◽  
T. Sado ◽  
K. Hara

The authors have investigated the dissolution process of human cholesterol gallstones using a scanning electron microscope(SEM). This study was carried out by comparing control gallstones incubated in beagle bile with gallstones obtained from patients who were treated with chenodeoxycholic acid(CDCA).The cholesterol gallstones for this study were obtained from 14 patients. Three control patients were treated without CDCA and eleven patients were treated with CDCA 300-600 mg/day for periods ranging from four to twenty five months. It was confirmed through chemical analysis that these gallstones contained more than 80% cholesterol in both the outer surface and the core.The specimen were obtained from the outer surface and the core of the gallstones. Each specimen was attached to alminum sheet and coated with carbon to 100Å thickness. The SEM observation was made by Hitachi S-550 with 20 kV acceleration voltage and with 60-20, 000X magnification.


Author(s):  
M. Locke ◽  
J. T. McMahon

The fat body of insects has always been compared functionally to the liver of vertebrates. Both synthesize and store glycogen and lipid and are concerned with the formation of blood proteins. The comparison becomes even more apt with the discovery of microbodies and the localization of urate oxidase and catalase in insect fat body.The microbodies are oval to spherical bodies about 1μ across with a depression and dense core on one side. The core is made of coiled tubules together with dense material close to the depressed membrane. The tubules may appear loose or densely packed but always intertwined like liquid crystals, never straight as in solid crystals (Fig. 1). When fat body is reacted with diaminobenzidine free base and H2O2 at pH 9.0 to determine the distribution of catalase, electron microscopy shows the enzyme in the matrix of the microbodies (Fig. 2). The reaction is abolished by 3-amino-1, 2, 4-triazole, a competitive inhibitor of catalase. The fat body is the only tissue which consistantly reacts positively for urate oxidase. The reaction product is sharply localized in granules of about the same size and distribution as the microbodies. The reaction is inhibited by 2, 6, 8-trichloropurine, a competitive inhibitor of urate oxidase.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


Author(s):  
William H. Massover

Each molecule of ferritin (d = 130Å) contains a core of iron surrounded by a 24-subunit protein shell. The amount of iron stored is variable and is present within the central cavity (d = 80Å) as a hydrated ferric oxide equivalent to the mineral, ferrihydrite. Many early ultrastructural studies of ferritin detected regular patterns of a multiparticulate substructure in the iron-rich core [e.g., 3,4], Each small particle was termed a “micelle“; a theory became widely accepted that a core consisted of up to six micelles positioned at the vertices of an octahedron. Other workers recognized that the apparent micelles were smaller or even disappeared if images were recorded closer to exact focus [e.g., 5]. In 1969, Haydon clearly established that the observed substructure was really an imaging artifact; each apparent micelle was only a dot in the underfocused phase contrast image of the supporting film superimposed on the amplitude image of the strongly scattering metal.


Author(s):  
P. Serwer

The genome of bacteriophage T7 is a duplex DNA molecule packaged in a space whose volume has been measured to be 2.2 x the volume of the B form of T7 DNA. To help determine the mechanism for packaging this DNA, the configuration of proteins inside the phage head has been investigated by electron microscopy. A core which is roughly cylindrical in outline has been observed inside the head of phage T7 using three different specimen preparation techniques.When T7 phage are treated with glutaraldehyde, DNA is ejected from the head often revealing an internal core (dark arrows in Fig. 1). When both the core and tail are present in a particle, the core appears to be coaxial with the tail. Core-tail complexes sometimes dislodge from their normal location and appear attached to the outside of a phage head (light arrow in Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document