GMPLS for Future Applications

Author(s):  
Weiqiang Sun ◽  
Wei Guo ◽  
Yaohui Jin ◽  
Lilin Yi ◽  
Weisheng Hu

Generalized Multiprotocol Label Switching, or GMPLS, is a suite of protocols to enable automated resource discovery, automated service provisioning and automated failure recovery. In recent years, a considerable number of efforts have been seen in the area of putting GMPLS into advanced networking/service environments. This is exemplified by the various research programs in the US, Europe, and Asia. In such programs, GMPLS has not only been used as a way to reduce management complexity and increase reliability, like the industry is doing right now, but also it is used as a new way for service provisioning. In this chapter, the authors first review activities in using GMPLS controlled optical networks in high performance computing environments. They try to identify the benefits, as well as the limitations in such networking practices. Then they introduce the past and on-going standardization work in the Internet Engineering Task Force (IETF) about GMPLS network performance characterization and measurement. Finally, the authors present the performance measurement results from a number of deployed GMPLS networks.

Author(s):  
M. C.R. Medeiros ◽  
N. S.C. Correia

Internet protocol (IP) over optical (IP-over-optical) networks is the widely accepted solution to meet the ever increasing demands of IP traffic. In an IP-over-optical network, the IP routers are attached to an optical core network, composed by optical cross-connects (OXC) that are interconnected by dynamically established optical wavelength channels called lighpaths (Rajagopalan, Pendarakis, Saha, Ramamoorthy, & Bala, 2000). To control such lightpaths in a dynamic, efficient, and realtime manner, generalized multiprotocol label switching (GMPLS) based control plane has been proposed by the Internet engineering task force (IETF) in the RFC 3945 edited by Mannie (2003).


2021 ◽  
pp. 457-490
Author(s):  
Debasish Datta

The task of network control and management is generally realized in two logical planes – control and management – which collaboratively operate to ensure smooth, secure, and survivable traffic flow in the data plane of the network. Some of the functionalities are realized in the control plane, needing real-time execution, such as recovery from network failures, and network reconfiguration due to traffic variation. Other functionalities deal with performance monitoring, configuration management, network security, accounting and billing etc., which are less time-sensitive and are addressed by the management plane. We first discuss the philosophy of multiple-layer abstraction of telecommunication networks, including control, management, and data planes, and then describe various network control and management techniques used in optical networks: operation, administration, and management (OAM) in SONET, generalized multiprotocol label switching (GMPLS), automatically switched optical network (ASON), and software-defined optical networking (SDON) in WDM networks. (141 words)


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Yan-Li Zheng ◽  
Ting-Ting Song ◽  
Jun-Xiong Chai ◽  
Xiao-Ping Yang ◽  
Meng-Meng Yu ◽  
...  

The photoelectric hybrid network has been proposed to achieve the ultrahigh bandwidth, lower delay, and less power consumption for chip multiprocessor (CMP) systems. However, a large number of optical elements used in optical networks-on-chip (ONoCs) generate high transmission loss which will influence network performance severely and increase power consumption. In this paper, the Dijkstra algorithm is adopted to realize adaptive routing with minimum transmission loss of link and reduce the output power of the link transmitter in mesh-based ONoCs. The numerical simulation results demonstrate that the transmission loss of a link in optimized power control based on the Dijkstra algorithm could be maximally reduced compared with traditional power control based on the dimensional routing algorithm. Additionally, it has a greater advantage in saving the average output power of optical transmitter compared to the adaptive power control in previous studies, while the network size expands. With the aid of simulation software OPNET, the network performance simulations in an optimized network revealed that the end-to-end (ETE) latency and throughput are not vastly reduced in regard to a traditional network. Hence, the optimized power control proposed in this paper can greatly reduce the power consumption of s network without having a big impact on network performance.


2018 ◽  
Vol 183 ◽  
pp. 02043 ◽  
Author(s):  
Bratislav Lukić ◽  
Dominique Saletti ◽  
Pascal Forquin

This paper presents the measurement results of the dynamic tensile strength of a High Performance Concrete (HPC) obtained using full-field identification method. An ultra-high speed imaging system and the virtual fields method were used to obtain this information. Furthermore the measurement results were compared with the local point-wise measurement to validate the data pressing. The obtained spall strength was found to be consistently 20% lower than the one obtained when the Novikov formula is used.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Reza Poorzare ◽  
Siamak Abedidarabad

AbstractThere is a misunderstanding in Optical Burst Switching (OBS) networks about the congestion status in the network that can cause a reduction in the performance of the networks. OBS networks are bufferless in their nature so when a burst drop happens in the network it can be because of the congestion or contention in the network but TCP cannot distinguish it is due to the congestion or contention. TCP wrongly decreases the congestion window size (cwnd) and causes significant reduction of the network performance. In this paper we are trying to employ a new algorithm by using fuzzy logic and some thresholds to divide the network into several areas then we can solve the problem. This new scheme can help us to distinguish a burst drop is because of the congestion or a burst contention in the network. Extensive simulative studies show that the proposed algorithm outperforms TCP Vegas in terms of throughput and packet delivery count.


2014 ◽  
Vol 25 (1) ◽  
pp. 169-185
Author(s):  
Samuel Ángel Jaramillo Flórez ◽  
Yuli Fernanda Achipiz

The bioelectronics takes of the biology the optimized elements for to do a copy and to build technological mechanisms with functions based in that of body lives components. Telecommunications and biology present an analogy between the optical receivers and insects eyes, which forms are adequate to receipt signal since a transmitter, and these are been leaded to perfection by the nature during millions of years in the environment adaptation. The sizes and the forms depend of the direction of the waves and of the radiation pattern of these biotransmitters and bioreceivers (omatidies of insects eyes), which is similar as the optical communications emitters and photodetectors. The growth of the telecommunication services makes necessary the optimization of the bandwidth of the transmission channels. Although the optic transmission is considered like the ideal as for the attenuation and distortion characteristics that make that it possesses the better relation bandwidth - longitude, the demand of more transmission capacity forces to take advantage of them efficiently. High costs generated when deploying Optic Fiber Networks at the transport level, together with other factors that avoid PONs arriving to the home and/or office, have impulsed the design and implementation of partially optical networks (FITL), including an alternative that uses infrared light. This work explores the basis of these news access networks, and it is presented an optical communication transmission/reception system with optic channel of free space where has been modulated the transmitter laser through a set of spherical lens and optical fibers that expand the beam of light to different points of an indoor enclosure producing multiple punctual images located in positions that permit to determine and to optimize the bandwidth of the system. The computational simulation results are showed and are compared with those experimentally measured, indicating that this is an original method for to design emitters and receivers of high performance for optical communications.


2014 ◽  
Vol 529 ◽  
pp. 13-15
Author(s):  
Qing Chuan Xi ◽  
Ke Cao ◽  
Ya Wen Huang ◽  
Guan Jun Chang ◽  
Jun Xiao Yang

Alkyl substituted disiloxanes demonstrated promising applications as high performance hydraulic oil, diffusion pump oil, etc. In this study, fluorinated alkyl substituted disiloxane was synthesized via Grignard reaction followed by condensation reaction. Its chemical structure was verified by FTIR and NMR. Measurement results showed that this silicon oil exhibited good high temperature performance, oxidation resistance and rust resistance.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Zhong-Nan Zhao ◽  
Pei-Li Qiao ◽  
Jian Wang

For the high speed sensor networks applications such as Internet of Things, multimedia transmission, the realization of high-rate transmission under limited resources has become a problem to be solved. A high speed transmission and energy optimization model oriented to lifecycle maximization is proposed in this paper. Based on information-directed mechanism, the energy threshold set and the relay node distance selection will be done in the process of target tracing, as a result, retaining a balance between transmission rate and energy consumption. Meanwhile, multiagent coevolution is adopted to achieve the maximum of network lifecycle. Comparing with the relevant methods, indexes for network such as hops, throughput, and number of active nodes, standard deviation of remaining energy, and the network lifecycle are considered, and the simulated experiments show that the proposed method will promote the transmission rate effectively, prolong the network lifecycle, and improve network performance as a whole.


Sign in / Sign up

Export Citation Format

Share Document