Polytopes of Higher Dimension in the Nature

Areas of research into the phenomena of nature in which the influence of polytopes of higher dimension is described in this chapter. These include studies of the structures of many chemical compounds whose molecules exhibit the properties of polytopes of higher dimension. This leads to the creation of higher-dimensional stereochemistry. Phase transitions of the second kind are accompanied by a change in the symmetry of the structure of matter, the description of which, in agreement with the experimental data, requires the attraction of spaces of higher dimension. Elementary cells of quasicrystals, having the form of polytopic prismahedrons, are given (polytopes of higher dimension). The structure of DNA as sequence of the higher dimensional polytopes are given.

Author(s):  
G. V. Zhizhin

This article examines the systematized and defined laws of anomalies in the filling of the electronic orbitals of the periodic table of chemical elements. The particulars of the chemical compounds caused by these anomalies investigated. It is shown that the deviation from the accepted order of filling electron orbitals contribute to an increase in the activity of the elements. As a result, among the anomalous elements are so important for us elements such as copper, silver, gold, platinum, uranium, and others. The anomalous elements participating in the creation of complex chemical compounds lead to molecules of higher dimension.


2020 ◽  
pp. 256-262
Author(s):  
N.V. Bubnova

The article suggests an approach to revelation anthroponymic markers of the integrated national cultural space, the creation and the preservation of which acquired especial significance in the 21st century due to the rapid globalization. Obviously, that proper names, which carry multifaceted historic and cultural information concerning people's life, constitute the major part of Russian cultural basis. Thus, the question arises, how to find these proper names in such a vocabulary diversity. Correspondingly, the exploration of proper names and theirs value on regional level using objective experimental data, can be considered as a “filtr” for the detection of such proper names. The experience of conducting such explorations of Smolensk's onomastic material is described in this article.


1993 ◽  
Vol 07 (18) ◽  
pp. 1215-1222
Author(s):  
A. L. ALEXE-IONESCU

An orientation transition observed in nematic liquid crystal samples, induced by the thickness, is interpreted in a new way. By supposing that the nematic liquid crystal contains chiral impurities, it is shown that the homeotropic orientation is stable only for thicknesses smaller than a critical one, and is dependent on the concentration of the chiral molecules. At the critical thickness, the transition from the homeotropic orientation to the distorted one is characterized by a tilt angle proportional to the square root of the actual thickness minus the critical one. This trend is typical of second order phase transitions. The agreement between the theory and the experimental data is fairly good over a large range of thickness of the sample.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5959
Author(s):  
Frantisek Klimenda ◽  
Roman Cizek ◽  
Matej Pisarik ◽  
Jan Sterba

The article deals with the creation of a program for stopping an autonomous robotic vehicle Robotino® 4. generation at a defined distance from an obstacle. One of the nine infrared distance sensors located on the frame of the robotic vehicle in the front part of the frame is used for this application task. The infrared distance sensor characteristic is created from the measured experimental data, which is then linearized in the given section. The main aim of the experiment is to find such an equation of a line that corresponds to the stopping of a robotic vehicle with a given accuracy from an obstacle. The determined equation of the line is applied to the resulting program for autonomous control of the robotic vehicle. This issue is one of the many tasks performed by AGV in the industry. The introduction of AGVs into the industry is one of the many possibilities within Industry 4.0.


1990 ◽  
Vol 23 (6) ◽  
pp. 545-549 ◽  
Author(s):  
H. L. Bhat ◽  
S. M. Clark ◽  
A. El Korashy ◽  
K. J. Roberts

The design of a new microfurnace for use for Laue diffraction studies of solid-state transformations is described. The furnace operates in the temperature range 298–573 K with a thermal stability of about ± 0.1 K. The potential of the synchrotron-radiation Laue diffraction technique for studies of structural phase transitions is demonstrated. Experimental data on phase transitions in caesium periodate, potassium tetrachlorozincate and pentaerythritol are presented.


Author(s):  
Tama´s Kalma´r-Nagy

In this paper we establish a practical formula that could be used to augment existing linear stability charts for turning to include the occurrence of contact loss between tool and workpiece in turning. We show that the contact loss discontinuity in the global model is responsible for the creation of the experimentally observed coexistence of subcritical instability and hysteresis in the cutting process. Comparison of experimental data with extensive numerical simulations nicely support the theoretical findings.


2012 ◽  
Vol 26 (31) ◽  
pp. 1250190
Author(s):  
ATAHAR PARVEEN ◽  
N. K. GAUR

We have investigated the elastic, cohesive and thermal properties of (Lu, Sc) VO 3 and Sc 1-x Lu x VO 3(0.6 ≤ x ≤ 0.9) perovskites by means of a modified rigid ion model (MRIM). The variation of specific heat is determined following the temperature driven structural phase transitions. Also, the effect of lattice distortions on the elastic and thermal properties of the present pure and doped vanadates has been studied by an atomistic approach. The calculated bulk modulus (BT), reststrahlen frequency (ν0), cohesive energy (ϕ), Debye temperature (θD) and Gruneisen parameter (γ) reproduce well with the corresponding experimental data. The specific heat results can further be improved by including the magnetic ordering contributions to the specific heat.


2012 ◽  
Vol 10 (5) ◽  
pp. 1391-1422 ◽  
Author(s):  
Purvee Bhardwaj ◽  
Sadhna Singh

AbstractThe contemporary status of experimental as well as theoretical advances within the special view of structural phase transitions is reviewed. A brief outline of phase transitions and its classification is presented first. High-pressure experimental techniques developed for studying the structural phase transitions and elastic properties are reviewed. The complete set of theoretical and experimental data obtained is for the group II–IV alkaline earth chalcogenides. Here the authors review the currently used calculations and high-pressure behavior of these materials and the theoretical work that has been done on them.


2000 ◽  
Vol 64 (6) ◽  
pp. 971-982 ◽  
Author(s):  
M. C. Gallardo ◽  
F. J. Romero ◽  
S. A. Hayward ◽  
E. K. H. Salje ◽  
J. del Cerro

AbstractWe present experimental data for the Pm3m-I4/mcm phase transitions in the perovskite crystals KMn1-xCaxF3 and SrTiO3. Comparison of calorimetric data (latent heat and specific heat) with order parameter data (measured with X-ray rocking methods) indicates that these transitions follow mean-field behaviour, and may be described using Landau potentials where the free energy expansion includes terms up to Q6. This potential is characteristic of transitions close to the tricritical point. Comparison of the behaviour of SrTiO3 and KMnF3 indicates that KMnF3 is closer to the tricritical point; a small amount of substitution of Ca for Mn causes the transition to cross the tricritical point from first order to second order behaviour.


Sign in / Sign up

Export Citation Format

Share Document