Practical Stability Limits in Turning

Author(s):  
Tama´s Kalma´r-Nagy

In this paper we establish a practical formula that could be used to augment existing linear stability charts for turning to include the occurrence of contact loss between tool and workpiece in turning. We show that the contact loss discontinuity in the global model is responsible for the creation of the experimentally observed coexistence of subcritical instability and hysteresis in the cutting process. Comparison of experimental data with extensive numerical simulations nicely support the theoretical findings.

Author(s):  
Larissa Steiger de Freitas ◽  
Marcus Vinícius Canhoto Alves ◽  
Rafael Rodrigues Francisco

2020 ◽  
pp. 256-262
Author(s):  
N.V. Bubnova

The article suggests an approach to revelation anthroponymic markers of the integrated national cultural space, the creation and the preservation of which acquired especial significance in the 21st century due to the rapid globalization. Obviously, that proper names, which carry multifaceted historic and cultural information concerning people's life, constitute the major part of Russian cultural basis. Thus, the question arises, how to find these proper names in such a vocabulary diversity. Correspondingly, the exploration of proper names and theirs value on regional level using objective experimental data, can be considered as a “filtr” for the detection of such proper names. The experience of conducting such explorations of Smolensk's onomastic material is described in this article.


Author(s):  
H. Lüdeke ◽  
R. von Soldenhoff

AbstractTo determine allowable tolerances between successive suction panels at hybrid laminar wings with suction surfaces, direct numerical simulations of Tollmien–Schlichting waves over different steps are carried out for realistic suction rates on a wind tunnel configuration. Simulations at given suction panel positions over forward and backward facing steps are carried out by the use of a high-order method for the direct simulation of Tollmien–Schlichting wave growth. Comparisons between high-fidelity direct numerical simulations and quick linear stability calculations have shown capabilities and limits of the well-validated linear stability theory design approach.


Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

AFM-based nanomanipulation is very challenging because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In the present paper, we investigate the modeling of AFM-based nanomanipulation emphasizing the effects of the relevant interactions at the nanoscale. The major contribution of the present work is the use of a combined DMT-JKR interaction model in order to describe the complete collision process between the AFM tip and the sample. The coupling between the interactions and the friction at the nanoscale is emphasized. The efficacy of the proposed model to reproduce experimental data is demonstrated via numerical simulations.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Author(s):  
Stephanie Follett ◽  
Amer Hameed ◽  
S. Darina ◽  
John G. Hetherington

In order to validate the numerical procedure, the explosion of a mine was recreated within the non-linear dynamics software, AUTODYN. Two models were created and analysed for the purposes of this study — buried and flush HE charge in sand. The explosion parameters — time of arrival, maximum overpressure and specific impulse were recorded at two stand-off distances above the ground surface. These parameters are then compared with LS-DYNA models and published experimental data. The results, presented in table format, are in reasonable agreement.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Andrea Rapisarda ◽  
Alessio Desando ◽  
Elena Campagnoli ◽  
Roberto Taurino

The design of modern aircrafts propulsion systems is strongly influenced by the important objective of environmental impact reduction. Through a great number of researches carried out in the last decades, significant improvements have been obtained in terms of lower fuel consumption and pollutant emission. Experimental tests are a necessary step to achieve new solutions that are more efficient than the current designs, even if during the preliminary design phase, a valid alternative to expensive experimental tests is the implementation of numerical models. The processing power of modern computers allows indeed the simulation of more complex and detailed phenomena than the past years. The present work focuses on the implementation of a numerical model for rotating stepped labyrinth seals installed in low-pressure turbines. These components are widely employed in sealing turbomachinery to reduce the leakage flow between rotating components. The numerical simulations were performed by using computational fluid dynamics (CFD) methodology, focusing on the leakage performances at different rotating speeds and inlet preswirl ratios. Investigations on velocity profiles into seal cavities were also carried out. To begin with, a smooth labyrinth seal model was validated by using the experimental data found in the literature. The numerical simulations were extended to the honeycomb labyrinth seals, with the validation performed on the velocity profiles. Then, the effects of two geometrical parameters, the rounded fin tip leading edge, and the step position were numerically investigated for both smooth and honeycomb labyrinth seals. The obtained results are generally in good agreement with the experimental data. The main effect found when the fin tip leading edge was rounded was a large increase in leakage flow, while the step position contribution to the flow path behavior is nonmonotone.


2016 ◽  
Vol 66 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Michal Šofer ◽  
Rostislav Fajkoš ◽  
Radim Halama

AbstractThe main aim of the presented paper is to show how heat treatment, in our case the induction hardening, will affect the wear rates as well as the ratcheting evolution process beneath the contact surface in the field of line rolling contact. Used wear model is based on shear band cracking mechanism [1] and non-linear kinematic and isotropic hardening rule of Chaboche and Lemaitre. The entire numerical simulations have been realized in the C# programming language. Results from numerical simulations are subsequently compared with experimental data.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 626
Author(s):  
Ireneusz Marzec ◽  
Jerzy Bobiński

Results of the numerical simulations of the size effect phenomenon for concrete in comparison with experimental data are presented. In-plane geometrically similar notched and unnotched beams under three-point bending are analyzed. EXtended Finite Element Method (XFEM) with a cohesive softening law is used. Comprehensive parametric study with the respect to the tensile strength and the initial fracture energy is performed. Sensitivity of the results with respect to the material parameters and the specimen geometry is investigated. Three different softening laws are examined. First, a bilinear softening definition is utilized. Then, an exponential curve is taken. Finally, a rational Bezier curve is tested. An ambiguity in choosing material parameters and softening curve definitions is discussed. Numerical results are compared with experimental outcomes recently reported in the literature. Two error measures are defined and used to quantitatively assess calculated maximum forces (nominal strengths) in comparison with experimental values as a primary criterion. In addition, the force—displacement curves are also analyzed. It is shown that all softening curves produce results consistent with the experimental data. Moreover, with different softening laws assumed, different initial fracture energies should be taken to obtain proper results.


Sign in / Sign up

Export Citation Format

Share Document