HYDRA

Author(s):  
Roger Zimmermann ◽  
Kun Fu ◽  
Dwipal A. Desai

This chapter describes the design for High-performance Data Recording Architecture (HYDRA). Presently, digital continuous media (CM) are well established as an integral part of many applications. In recent years, a considerable amount of research has focused on the efficient retrieval of such media for many concurrent users. The authors argue that scant attention has been paid to large-scale servers that can record such streams in real time. However, more and more devices produce direct digital output streams, either over wired or wireless networks, and various applications are emerging to make use of them. For example, cameras now provide the means in many industrial applications to monitor, visualize, and diagnose events. Hence, the need arises to capture and store these streams with an efficient data stream recorder that can handle both recording and playback of many streams simultaneously and provide a central repository for all data. With this chapter, the authors present the design of the HYDRA system, which uses a unified architecture that integrates multi-stream recording and retrieval in a coherent paradigm, and hence provides support for these emerging applications.

1981 ◽  
Vol 20 (3) ◽  
Author(s):  
S. E. Weaver ◽  
B. W. Binns ◽  
L. M. Ralston

2018 ◽  
Vol 165 ◽  
pp. 17004 ◽  
Author(s):  
Alberto Campagnolo ◽  
Giovanni Meneghetti

The Peak Stress Method (PSM) is an engineering, FE-oriented application of the notch stress intensity factor (NSIF) approach to fatigue design of welded joints, which takes advantage of the singular linear elastic peak stresses from FE analyses with coarse meshes. Originally, the PSM was calibrated to rapidly estimate the NSIFs by using 3D, eight-node brick elements, taking advantage of the submodeling technique. 3D modelling of large-scale structures is increasingly adopted in industrial applications, thanks to the growing spread of high-performance computing (HPC). Based on this trend, the application of PSM by means of 3D models should possibly be even more speeded up. To do this, in the present contribution the PSM has been calibrated under mode I, II and III loadings by using ten-node tetra elements, which are able to directly discretize complex 3D geometries without the need for submodels. The calibration of the PSM has been carried out by analysing several 3D mode I, II and III problems. Afterwards, an applicative example has been considered, which is relevant to a large-scale steel welded structure, having overall size on the order of meters. Two 3D FE models, having global size of tetra elements equal to 5 and 1.66 mm, have been solved by taking advantage of HPC, being the global number of degrees of freedom equal to 10 and 140 millions, respectively. The NSIFs values estimated at the toe and root sides according to the PSM have been compared with those calculated by adopting a shell-to-solid technique.


2013 ◽  
Vol 831 ◽  
pp. 276-281
Author(s):  
Ya Jie Ma ◽  
Zhi Jian Mei ◽  
Xiang Chuan Tian

Large-scale sensor networks are systems that a large number of high-throughput autonomous sensor nodes are distributed over wide areas. Much attention has paid to provide efficient data management in such systems. Sensor grid provides low cost and high performance computing to physical world data perceived through sensors. This article analyses the real-time sensor grid challenges on large-scale air pollution data management. A sensor grid architecture for pollution data management is proposed. The processing of the service-oriented grid management is described in psuedocode. A simulation experiment investigates the performance of the data management for such a system.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1475 ◽  
Author(s):  
Kristian Birk Buhl ◽  
Asger Holm Agergaard ◽  
Mie Lillethorup ◽  
Jakob Pagh Nikolajsen ◽  
Steen Uttrup Pedersen ◽  
...  

Creating strong joints between dissimilar materials for high-performance hybrid products places high demands on modern adhesives. Traditionally, adhesion relies on the compatibility between surfaces, often requiring the use of primers and thick bonding layers to achieve stable joints. The coatings of polymer brushes enable the compatibilization of material surfaces through precise control over surface chemistry, facilitating strong adhesion through a nanometer-thin layer. Here, we give a detailed account of our research on adhesion promoted by polymer brushes along with examples from industrial applications. We discuss two fundamentally different adhesive mechanisms of polymer brushes, namely (1) physical bonding via entanglement and (2) chemical bonding. The former mechanism is demonstrated by e.g., the strong bonding between poly(methyl methacrylate) (PMMA) brush coated stainless steel and bulk PMMA, while the latter is shown by e.g., the improved adhesion between silicone and titanium substrates, functionalized by a hydrosilane-modified poly(hydroxyethyl methacrylate) (PHEMA) brush. This review establishes that the clever design of polymer brushes can facilitate strong bonding between metals and various polymer materials or compatibilize fillers or nanoparticles with otherwise incompatible polymeric matrices. To realize the full potential of polymer brush functionalized materials, we discuss the progress in the synthesis of polymer brushes under ambient and scalable industrial conditions, and present recent developments in atom transfer radical polymerization for the large-scale production of brush-modified materials.


2010 ◽  
Vol 667-669 ◽  
pp. 1153-1158 ◽  
Author(s):  
Philipp Frint ◽  
Matthias Hockauf ◽  
T. Halle ◽  
G. Strehl ◽  
Thomas Lampke ◽  
...  

Future applications of ultrafine-grained, high performance materials produced by equal-channel angular pressing (ECAP) will most likely require processing on an industrial scale. There is a need for detailed microstructural and mechanical characterisation of large-scale, ECAP-processed billets. In the present study, we examine the microstructure and mechanical properties as a function of location and orientation within large (50 x 50 x 300 mm³) billets of an Al 6060 alloy produced by ECAP (90° channel angle) with different magnitudes of backpressure. The internal deformation is analysed using a grid-line method on split billets. Hardness is recorded in longitudinal and cross-sectional planes. In order to further characterise the local, post-ECAP mechanical properties, tensile tests in different layers are performed. Moreover, low voltage scanning transmission electron microscopy observations highlight relevant microstructural features. We find that the homogeneity and anisotropy of mechanical properties within the billets depend significantly on the geometry of the shear zone. We demonstrate that deformation gradients can be reduced considerably by increasing the backpressure: The opening-angle of the fan-shaped shear zone is reduced from ψ ≈ 20 ° to ψ ≈ 7 ° when the backpressure is increased from 0 to 150 MPa. Backpressures of 150 MPa result in excellent homogeneity, with a relative variation of tensile mechanical properties of less than 7 %. Our investigation demonstrates that ECAP is suitable for processing homogenous, high performance materials on a large scale, paving the way for advanced industrial applications.


2015 ◽  
Vol 3 (46) ◽  
pp. 12116-12122 ◽  
Author(s):  
Xiaoyu She ◽  
Xianli Su ◽  
Huizhen Du ◽  
Tao Liang ◽  
Gang Zheng ◽  
...  

High performance Ge doped HMS compounds are synthesized by thermal explosion—a new method which paves the way for the mass production of HMS compounds and their large-scale industrial applications.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Sign in / Sign up

Export Citation Format

Share Document