On Extended Topochemical Atom (ETA) Indices for QSPR Studies

Author(s):  
Kunal Roy ◽  
Rudra Narayan Das

Development of predictive models has been accepted as an important strategy to aid in toxicity screening of chemicals, determination of physicochemical as well as other biological activity of new molecules, and also in the generation and optimization of lead compounds in rational drug discovery process. The journey of quantitative structure-property relationship (QSPR) modeling started with the development of various property-based and two-dimensional descriptors to model various physicochemical and biological properties (including toxicity). Topological descriptors contain significant information encoded in the molecular structure. Extended topochemical atom (ETA) indices, a relatively new class of topological descriptors, are the focus point in this chapter. ETA indices contain important information regarding the nature of the atoms, bonds, atomic electronic environment and consider the contribution of different functional groups, molecular fragments, and branching to the response as evidenced by different reports showing their successful application in modeling different endpoints including toxicity, drug activity, and physicochemical properties. Extensive research is still going on for the refinement of the ETA indices by the incorporation of some novel parameters, and future reports on ETA indices will include these new indices.

2014 ◽  
pp. 841-873
Author(s):  
Kunal Roy ◽  
Rudra Narayan Das

Development of predictive models has been accepted as an important strategy to aid in toxicity screening of chemicals, determination of physicochemical as well as other biological activity of new molecules, and also in the generation and optimization of lead compounds in rational drug discovery process. The journey of quantitative structure-property relationship (QSPR) modeling started with the development of various property-based and two-dimensional descriptors to model various physicochemical and biological properties (including toxicity). Topological descriptors contain significant information encoded in the molecular structure. Extended topochemical atom (ETA) indices, a relatively new class of topological descriptors, are the focus point in this chapter. ETA indices contain important information regarding the nature of the atoms, bonds, atomic electronic environment and consider the contribution of different functional groups, molecular fragments, and branching to the response as evidenced by different reports showing their successful application in modeling different endpoints including toxicity, drug activity, and physicochemical properties. Extensive research is still going on for the refinement of the ETA indices by the incorporation of some novel parameters, and future reports on ETA indices will include these new indices.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


2020 ◽  
Vol 27 (28) ◽  
pp. 4584-4592 ◽  
Author(s):  
Avik Khan ◽  
Baobin Wang ◽  
Yonghao Ni

Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.


Author(s):  
Shixing Zhu ◽  
Jiayuan Zhang ◽  
Zhihua Lv ◽  
Mingming Yu

Background: Apigenin, a natural plant flavone, has been shown to possess a variety of biological properties. Objective: In this report, a highly selective and sensitive LC-MS/MS method was developed and validated for the determination of apigenin in rat plasma. Methods: Analysts were separated on the HSS T3 column (1.8 μm 2.1×100 mm) using acetonitrile and 0.1% formic acid in 2 mM ammonium acetate buffer at a supply rate of 0.200 mL/min as eluent in gradient model. Results: Plasma samples were treated by protein precipitation using acetonitrile for the recovery ranging from 86.5% to 90.1% for apigenin. The calibration curves followed linearity in the concentration range of 0.50-500 ng/mL. The inter-day and intra-day precisions at different QC levels within 13.1% and the accuracies ranged from -10.6% to 8.6%. Conclusion: The assay has been successfully applied to the pharmacokinetic study of apigenin in rats.


2020 ◽  
Vol 17 (8) ◽  
pp. 991-1041
Author(s):  
Divya Utreja ◽  
Jagdish Kaur ◽  
Komalpreet Kaur ◽  
Palak Jain

Triazine, one of the nitrogen containing heterocyclic compounds has attracted the considerable interest of researchers due to the vast array of biological properties such as anti-viral, antitumor, anti-convulsant, analgesic, antioxidant, anti-depressant, herbicidal, insecticidal, fungicidal, antibacterial and anti-inflammatory activities offered by it. Various antibacterial agents have been synthesized by researchers to curb bacterial diseases but due to rapid development in drug resistance, tolerance and side effects, there had always been a need for the synthesis of a new class of antibacterial agents that would exhibit improved pharmacological action. Therefore, this review mainly focuses on the various methods for the synthesis of triazine derivatives and their antibacterial activity.


2020 ◽  
Vol 16 (1) ◽  
pp. 65-74
Author(s):  
Ortensia Ilaria Parisi ◽  
Mariarosa Ruffo ◽  
Fabio Amone ◽  
Rocco Malivindi ◽  
Domenico Gorgoglione ◽  
...  

Background: The Rotonda’s Red Eggplant belongs to the family of Solanum aethiopicum and it is cultivated in a specific area of Potenza (Basilicata, South of Italy) including villages of Rotonda, Viggianello, Castelluccio Superiore and Castelluccio Inferiore. The Red Eggplant cultivated in this area has gained the PDO, “Protected Designation of Origin”. Objective: The aim of this research was to evaluate the use of PDO Rotonda’s Red Eggplant extract as a possible nutraceutical supplement. The antioxidant, antihypertensive, hypoglycemic, and hypolipidemic properties were in vitro evaluated. Methods: The antioxidant activity was investigated by evaluating the scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and by performing the Ammonium Molybdate and Folin-Ciocalteu assay. The hypoglycemic and antihypertensive activity was studied by evaluating the α-Amylase, α-Glucosidase and Angiotensin Converting Enzyme, respectively, inhibiting activity. In order to evaluate the hypolipidemic activity, the pancreatic lipase inhibiting property was determined and Oil Red O staining assay was performed. Finally, to evaluate the possible use of this extract as a minerals supplement, Selenium, Potassium and Chrome bioaccessibility was studied. Results: The obtained results underline the good antioxidant, hypoglycemic, antihypertensive and hypolipidemic in vitro properties of the PDO Rotonda’s Red Eggplant extract. Moreover, the obtained data show a higher minerals bioaccessibility and this higher value could be ascribable to the natural phytocomplex of PDO Rotonda’s Red Eggplant, which increases the minerals bioaccessibility if compare it with a control sample. Conclusion: The obtained results show that PDO Rotonda’s Red Eggplant extract, might be used as a possible nutraceutical supplement, along with traditional therapies, both for its biological properties and for its minerals bioaccessibility value.


2019 ◽  
Vol 15 (4) ◽  
pp. 312-318
Author(s):  
Shuoye Yang

Background: The therapeutic ability and application of antifungal peptide (APs) are limited by their physico-chemical and biological properties, the nano-liposomal encapsulation would improve the in vivo circulation and stability. </P><P> Objective: To develop a long-circulating liposomal delivery systems encapsulated APs-CGA-N12 with PEGylated lipids and cholesterol, and investigated through in vivo pharmacokinetics. Methods: The liposomes were prepared and characterized, a rapid and simple liquid chromatographytandem mass spectrometry (LC-MS/MS) assay was developed for the determination of antifungal peptide in vivo, the pharmacokinetic characteristics of APs liposomes were evaluated in rats. Results: Liposomes had a large, unilamellar structure, particle size and Zeta potential ranged from 160 to 185 nm and -0.55 to 1.1 mV, respectively. The results indicated that the plasma concentration of peptides in reference solutions rapidly declined after intravenous administration, whereas the liposomeencapsulated ones showed slower elimination. The AUC(0-∞) was increased by 3.0-fold in liposomes in comparison with standard solution (20 mg·kg-1), the half-life (T1/2) was 1.6- and 1.5-fold higher compared to the reference groups of 20 and 40 mg·kg-1, respectively. Conclusion: Therefore, it could be concluded that liposomal encapsulation effectively improved the bioavailability and pharmacokinetic property of antifungal peptides.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 81
Author(s):  
Anna Carbone ◽  
Stella Cascioferro ◽  
Barbara Parrino ◽  
Daniela Carbone ◽  
Camilla Pecoraro ◽  
...  

Anti-virulence strategy is currently considered a promising approach to overcome the global threat of the antibiotic resistance. Among different bacterial virulence factors, the biofilm formation is recognized as one of the most relevant. Considering the high and growing percentage of multi-drug resistant infections that are biofilm-mediated, new therapeutic agents capable of counteracting the formation of biofilms are urgently required. In this scenario, a new series of 18 thiazole derivatives was efficiently synthesized and evaluated for its ability to inhibit biofilm formation against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923 and S. aureus ATCC 6538 and the Gram-negative strain Pseudomonas aeruginosa ATCC 15442. Most of the new compounds showed a marked selectivity against the Gram-positive strains. Remarkably, five compounds exhibited BIC50 values against S. aureus ATCC 25923 ranging from 1.0 to 9.1 µM. The new compounds, affecting the biofilm formation without any interference on microbial growth, can be considered promising lead compounds for the development of a new class of anti-virulence agents.


Sign in / Sign up

Export Citation Format

Share Document