Ambient Intelligence and Pervasive Architecture Designed within the EPI-MEDICS Personal ECG Monitor

Author(s):  
Hussein Atoui ◽  
David Télisson ◽  
Jocelyne Fyan ◽  
Paul Rubel

Recent years have witnessed a growing interest in developing personalized and nonhospital based care systems to improve the management of cardiac care. The EPI-MEDICS project has designed an intelligent, portable Personal ECG Monitor (PEM) embedding an advanced decision making system. We present two of the ambient intelligence models embedded in the PEM: the neural-network based ischemia detection module and the Bayesian-network risk stratification module. Ischemia detection was expanded to take into account the patient ECG, clinical data, and medical history. The neural-network ECG interpretation module and the Bayesian-network risk factors module collaborate through a fuzzy-logic-based layer. We also present two telemedicine solutions that we have designed and in which the PEM is integrated. The first telemedical architecture was created to allow the collection of medical data and their transmission between healthcare providers to get an expert opinion. The second one is intended for improving healthcare in old peoples homes.

Author(s):  
Thomas Boraud

This chapter explores the pathophysiology of neural conditions related to the neural network of decision-making. If humans are not fully rational, they manage to pretend to be most of the time. Some individuals are distinguished by traits that influence their decision-making, such as impulsiveness, procrastination, and stubbornness. These behaviours are so common that they are not considered pathological. There are, however, cases in which the decision-making system is dysfunctional enough for this irrationality to go beyond socially acceptable norms. This is the field of neurological and psychiatric syndromes of decision-making. The chapter then examines in detail obsessive-compulsive disorders (OCDs), Tourette’s syndrome, Parkinson's disease, and hyperdopaminergic syndromes. It also describes the deep brain stimulation paradox.


2021 ◽  
pp. 147592172110104
Author(s):  
Muhammad Monjurul Karim ◽  
Ruwen Qin ◽  
Genda Chen ◽  
Zhaozheng Yin

Bridge inspection is an important step in preserving and rehabilitating transportation infrastructure for extending their service lives. The advancement of mobile robotic technology allows the rapid collection of a large amount of inspection video data. However, the data are mainly the images of complex scenes, wherein a bridge of various structural elements mix with a cluttered background. Assisting bridge inspectors in extracting structural elements of bridges from the big complex video data, and sorting them out by classes, will prepare inspectors for the element-wise inspection to determine the condition of bridges. This article is motivated to develop an assistive intelligence model for segmenting multiclass bridge elements from the inspection videos captured by an aerial inspection platform. With a small initial training dataset labeled by inspectors, a Mask Region-based Convolutional Neural Network pre-trained on a large public dataset was transferred to the new task of multiclass bridge element segmentation. Besides, the temporal coherence analysis attempts to recover false negatives and identify the weakness that the neural network can learn to improve. Furthermore, a semi-supervised self-training method was developed to engage experienced inspectors in refining the network iteratively. Quantitative and qualitative results from evaluating the developed deep neural network demonstrate that the proposed method can utilize a small amount of time and guidance from experienced inspectors (3.58 h for labeling 66 images) to build the network of excellent performance (91.8% precision, 93.6% recall, and 92.7% f1-score). Importantly, the article illustrates an approach to leveraging the domain knowledge and experiences of bridge professionals into computational intelligence models to efficiently adapt the models to varied bridges in the National Bridge Inventory.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Waranrach Viriyavit ◽  
Virach Sornlertlamvanich

Falls from a bed often occur when an elderly patient attempts to get out of bed or comes close to the edge of a bed. These mishaps have a high possibility of serious injuries, such as bruises, soreness, and bone fractures. Moreover, a lack of repositioning the body of a bedridden elderly person may cause bedsores. To avoid such a risk, a continuous activity monitoring system is needed for taking care of the elderly. In this study, we propose a bed position classification method based on the sensor signals collected from only four sensors that are embedded in a panel (composed of two piezoelectric sensors and two pressure sensors). It is installed under the mattress on the bed. The bed positions considered are classified into five different classes, i.e., off-bed, sitting, lying center, lying left, and lying right. To collect the training dataset, three elderly patients were asked for consent to participate in the experiment. In our approach, a neural network combined with a Bayesian network is adopted to classify the bed positions and put a constraint on the possible sequences of the bed positions. The results from both the neural network and Bayesian network are combined by the weighted arithmetic mean. The experimental results have a maximum accuracy of position classification of 97.06% when the proportion of coefficients for the neural network and the Bayesian network is 0.3 and 0.7, respectively.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Shreya Nag ◽  
Nimitha Jammula

The diagnosis of a disease to determine a specific condition is crucial in caring for patients and furthering medical research. The timely and accurate diagnosis can have important implications for both patients and healthcare providers. An earlier diagnosis allows doctors to consider more methods of treatment, allowing them to have a greater flexibility of tailoring their decisions, and ultimately improving the patient’s health. Additionally, a timely detection allows patients to have a greater control over their health and their decisions, allowing them to plan ahead. As advancements in computer science and technology continue to improve, these two factors can play a major role in aiding healthcare providers with medical issues. The emergence of artificial intelligence and machine learning can aid in addressing the challenge of completing timely and accurate diagnosis. The goal of this research work is to design a system that utilizes machine learning and neural network techniques to diagnose chronic kidney disease with more than 90% accuracy based on a clinical data set, and to do a comparative study of the performance of the neural network versus supervised machine learning approaches. Based on the results, all the algorithms performed well in prediction of chronic kidney disease (CKD) with more that 90% accuracy. The neural network system provided the best performance (accuracy = 100%) in prediction of chronic kidney disease in comparison with the supervised Random Forest algorithm (accuracy = 99%) and the supervised Decision Tree algorithm (accuracy = 97%).


1994 ◽  
Vol 33 (01) ◽  
pp. 157-160 ◽  
Author(s):  
S. Kruse-Andersen ◽  
J. Kolberg ◽  
E. Jakobsen

Abstract:Continuous recording of intraluminal pressures for extended periods of time is currently regarded as a valuable method for detection of esophageal motor abnormalities. A subsequent automatic analysis of the resulting motility data relies on strict mathematical criteria for recognition of pressure events. Due to great variation in events, this method often fails to detect biologically relevant pressure variations. We have tried to develop a new concept for recognition of pressure events based on a neural network. Pressures were recorded for over 23 hours in 29 normal volunteers by means of a portable data recording system. A number of pressure events and non-events were selected from 9 recordings and used for training the network. The performance of the trained network was then verified on recordings from the remaining 20 volunteers. The accuracy and sensitivity of the two systems were comparable. However, the neural network recognized pressure peaks clearly generated by muscular activity that had escaped detection by the conventional program. In conclusion, we believe that neu-rocomputing has potential advantages for automatic analysis of gastrointestinal motility data.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 349-351
Author(s):  
H. Mizuta ◽  
K. Kawachi ◽  
H. Yoshida ◽  
K. Iida ◽  
Y. Okubo ◽  
...  

Abstract:This paper compares two classifiers: Pseudo Bayesian and Neural Network for assisting in making diagnoses of psychiatric patients based on a simple yes/no questionnaire which is provided at the outpatient’s first visit to the hospital. The classifiers categorize patients into three most commonly seen ICD classes, i.e. schizophrenic, emotional and neurotic disorders. One hundred completed questionnaires were utilized for constructing and evaluating the classifiers. Average correct decision rates were 73.3% for the Pseudo Bayesian Classifier and 77.3% for the Neural Network classifier. These rates were higher than the rate which an experienced psychiatrist achieved based on the same restricted data as the classifiers utilized. These classifiers may be effectively utilized for assisting psychiatrists in making their final diagnoses.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2005 ◽  
Vol 2 (2) ◽  
pp. 25
Author(s):  
Noraliza Hamzah ◽  
Wan Nor Ainin Wan Abdullah ◽  
Pauziah Mohd Arsad

Power Quality disturbances problems have gained widespread interest worldwide due to the proliferation of power electronic load such as adjustable speed drives, computer, industrial drives, communication and medical equipments. This paper presents a technique based on wavelet and probabilistic neural network to detect and classify power quality disturbances, which are harmonic, voltage sag, swell and oscillatory transient. The power quality disturbances are obtained from the waveform data collected from premises, which include the UiTM Sarawak, Faculty of Science Computer in Shah Alam, Jati College, Menara UiTM, PP Seksyen 18 and Putra LRT. Reliable Power Meter is used for data monitoring and the data is further processed using the Microsoft Excel software. From the processed data, power quality disturbances are detected using the wavelet technique. After the disturbances being detected, it is then classified using the Probabilistic Neural Network. Sixty data has been chosen for the training of the Probabilistic Neural Network and ten data has been used for the testing of the neural network. The results are further interfaced using matlab script code.  Results from the research have been very promising which proved that the wavelet technique and Probabilistic Neural Network is capable to be used for power quality disturbances detection and classification.


Sign in / Sign up

Export Citation Format

Share Document