A Linear Optimization Approach for Increasing Sustainability in Vegetable Crop Production

Author(s):  
Lana dos Santos ◽  
Marcos Arenales ◽  
Alysson Costa ◽  
Ricardo Santos

This chapter is concerned with a set of optimization problems associated to crop rotation scheduling in the context of vegetable crop production according to some ecological criteria: no crop of the same botanic family is planted in sequence, green manure and fallow periods must be present in any schedule. A core mathematical model called the crop rotation scheduling model is proposed to represent these ecological criteria together with specific technical constraints associated to the growing of vegetable crops. Three optimization problems based on crop rotation schedules are written in detail in this chapter. For each problem, the authors present a general modeling framework and a solution methodology based on a technique known as column generation, which iteratively builds crop rotation plans for a number of plots. Some extensions are also presented, with the aim of incorporating additional characteristics found in production field conditions. This chapter ends with a brief discussion on a set of computational experiments and some suggestions for future research.

2011 ◽  
pp. 236-267
Author(s):  
Lana dos Santos ◽  
Marcos Arenales ◽  
Alysson Costa ◽  
Ricardo Santos

This chapter is concerned with a set of optimization problems associated to crop rotation scheduling in the context of vegetable crop production according to some ecological criteria: no crop of the same botanic family is planted in sequence, green manure and fallow periods must be present in any schedule. A core mathematical model called the crop rotation scheduling model is proposed to represent these ecological criteria together with specific technical constraints associated to the growing of vegetable crops. Three optimization problems based on crop rotation schedules are written in detail in this chapter. For each problem, the authors present a general modeling framework and a solution methodology based on a technique known as column generation, which iteratively builds crop rotation plans for a number of plots. Some extensions are also presented, with the aim of incorporating additional characteristics found in production field conditions. This chapter ends with a brief discussion on a set of computational experiments and some suggestions for future research.


2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


EDIS ◽  
2022 ◽  
Vol 2021 (6) ◽  
Author(s):  
Rao Mylavarapu ◽  
George Hochmuth ◽  
Guodong Liu

This publication presents the fertilization recommendations for vegetable crops based on soil tests performed by the UF/IFAS Extension Soil Testing Laboratory (ESTL). It contains the basic information from which ESTL soil test reports and fertilization recommendations are generated. The audiences for this information include commercial and small farmers, crop advisers and consultants, state and local agencies, fertilizer industry, and any interested individuals interested in sustainable nutrient and environmental management. Major revision by Rao Mylavarapu, George Hochmuth, and Guodong Liu; 12 pp. https://edis.ifas.ufl.edu/cv002


2018 ◽  
Vol 36 (4) ◽  
pp. 473-479
Author(s):  
Aline F Barros ◽  
Vicente P Campos ◽  
Larissa N Souza ◽  
Sarah S Costa ◽  
Willian C Terra ◽  
...  

ABSTRACT Species of the genus Meloidogyne are limiting factors in vegetable crop production. Studies in Brazil about the occurrence of root-knot nematodes in areas of vegetable crop growth have been conducted without using advanced techniques. Using modern techniques, such as biochemical and molecular methods, improves the accuracy of Meloidogyne species identification. The present study characterized species of Meloidogyne in 36 samples associated with vegetable crops using isoenzyme electrophoresis, SCAR markers, and morphological markers, in addition to validating SCAR markers for accurate species identification. The species M. incognita, M. javanica, M. hapla, M. morocciensis, and M. arenaria were identified, with the first two being the most frequent. Here, the species M. arenaria parasitizing scarlet eggplant and M. morocciensis parasitizing pumpkin and cabbage are reported in Brazil for the first time. Esterase electrophoresis efficiently separated the species of Meloidogyne found in vegetable crops; however, SCAR markers were only effective for the identification of M. incognita, M. javanica, and M. hapla, since the primer pair Far/Rar yielded no amplification product to confirm the identity of M. arenaria. The species M.arenaria and M. morocciensis could not be distinguished by the female perineal patterns. Based on the present results, new primers should be designed for the identification of M. arenaria and M. morocciensis.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1569
Author(s):  
Spyridon A. Petropoulos

The research interest on plant biostimulant applications in vegetable crop production is gradually increasing and several reports highlight the beneficial effects that such products may have not only on crop performance but also on the quality of the final product. Moreover, numerous products with biostimulatory activity are being developed which need further evaluation under variable growing conditions and different crops. Plant hydrolysates which contain amino acids and peptides have been acclaimed with several positive effects on crop performance of diverse horticultural crops, while macro-algae are also considered effective biostimulants on plants grown under stress conditions. A recent study evaluated the use of protein hydrolysates and brown macro-algae (Ascophyllum nodosum and Ecklonia maxima) as innovative and cost effective approaches for sustainable vegetable production. The present editorial provides an overview of the main findings of that study, while discussing the practical applications that biostimulants may have in the greenhouse production of vegetable crops, aiming to increase the yield and the quality of the final produce and improve crop tolerance to abiotic stressors.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Rao S. Mylavarapu ◽  
George J. Hochmuth ◽  
Guodong Liu

This publication presents the fertilization recommendations for vegetable crops based on soil tests performed by the IFAS Extension Soil Testing Laboratory (ESTL). It contains the basic information from which ESTL soil-test reports and fertilization recommendations are generated. Additional information on nutrient recommendations is presented in the Vegetable Production Handbook of Florida, 2017-2018. Similarly, IFAS Standardized Nutrient Recommendations for Agronomic Crops can be found in SL129 (Mylavarapu, 2015).  


1998 ◽  
Vol 55 (spe) ◽  
pp. 116-120 ◽  
Author(s):  
E. M. Grassbaugh ◽  
M. A. Bennett

Several factors can influence stand establishment in vegetable crop production. Environmental conditions such as soil physical characteristics, temperature and moisture, various cultural practices, and diseases may all be limiting factors in establishing maximum stands and achieving the highest possible yields. Measures taken to increase stands include soil improvements, implementing cultural practices, and use of chemical and biological seed treatments. Combining seed treatments and cultural/tillage practices to minimize environmental constraints can lead to maximum stands and yields in the production of high quality vegetable crops.


2021 ◽  
Vol 20 (6) ◽  
pp. 45-57
Author(s):  
Robert Gruszecki ◽  
Aneta Stawiarz

Amino acids can induce defence reactions and reduce the impact of abiotic stresses on plants, yet their impact on the yield of vegetable crops is varied. For this reason, an analysis of the published research on the effect of biostimulants containing amino acids (BCAA) on the quantity and quality of vegetable crop yield was carried out. The results of the research indicate the multidirectional effect of BCAA on vegetable plants and they also show that the use of these biostimulants may increase yield quantity and quality as well as influence biometric features and chemical composition of plants. BCAA may also affect the amount of losses caused by pests and during the storage of vegetables. However, the variability of the effects is very large and depends on many factors: composition of BCAA, time, dose, number and method of application, cultivation cycle, weather conditions, and plant species or even cultivar. Therefore, the effective use of BCAA requires further research, while their proper application in horticultural practice will require taking into account many factors.


Author(s):  
J. Cole Smith ◽  
Alfonso Ortega ◽  
Colleen M. Gabel ◽  
Dale Henderson

We consider a problem arising in designing Compact Thermal Models (CTMs) for the purpose of simulating the thermal response of a package. CTMs are often preferred over more detailed models due to their minimal representation and the reduced computations required to obtain accurate nodal temperature predictions under hypothetical scenarios. The quality of CTM performance depends on the determination of an appropriate set of parameters that drive the model. The subject of this paper is a heuristic nonlinear optimization approach to computing the set of CTM parameters that best predicts the thermal response of a package. Our algorithm solves a series of one-dimensional nonconvex optimization problems to obtain these parameters, exploiting the special structure of the CTM in order to improve both the execution time of the algorithm and the quality of the CTM performance. We conclude the paper by providing a brief array of computational results as a proof of concept, along with several possible future research extensions.


Sign in / Sign up

Export Citation Format

Share Document