An Approach Combining DEA and ANN for Hotel Performance Evaluation

2022 ◽  
pp. 1449-1464
Author(s):  
Himanshu Sharma ◽  
Gunmala Suri ◽  
Vandana Savara

For a hotel to succeed in the long run, it becomes vital to achieve higher profits along with increased performance. The performance evaluation of a hotel can signify its sustainable competitiveness within the hospitality industry. This article performs a two-stage study that combines data envelopment analysis (DEA) and artificial neural network (ANN) to evaluate hotel performance. The first stage to evaluate the efficiency for hotels is by using the DEA technique. The input variables considered are the number of rooms and the ratings corresponding to six aspects of a hotel (service, room, value, location, sleep quality, and cleanliness). Also, revenue per available room (RevPAR) and customer satisfaction (CS) are the output variables. The distinguishing factor of this article is that it involves the use of EWOM for performance evaluation. In the second stage, the performance of the hotels is judged by using the ANN technique. The ANN results showed that the performance of the hotels is quite good. Finally, discussions based on the results and scope for future studies are provided.

2020 ◽  
Vol 12 (1) ◽  
pp. 15-29
Author(s):  
Himanshu Sharma ◽  
Gunmala Suri ◽  
Vandana Savara

For a hotel to succeed in the long run, it becomes vital to achieve higher profits along with increased performance. The performance evaluation of a hotel can signify its sustainable competitiveness within the hospitality industry. This article performs a two-stage study that combines data envelopment analysis (DEA) and artificial neural network (ANN) to evaluate hotel performance. The first stage to evaluate the efficiency for hotels is by using the DEA technique. The input variables considered are the number of rooms and the ratings corresponding to six aspects of a hotel (service, room, value, location, sleep quality, and cleanliness). Also, revenue per available room (RevPAR) and customer satisfaction (CS) are the output variables. The distinguishing factor of this article is that it involves the use of EWOM for performance evaluation. In the second stage, the performance of the hotels is judged by using the ANN technique. The ANN results showed that the performance of the hotels is quite good. Finally, discussions based on the results and scope for future studies are provided.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


Author(s):  
Jianhua Yang ◽  
Evor L. Hines ◽  
Ian Guymer ◽  
Daciana D. Iliescu ◽  
Mark S. Leeson ◽  
...  

In this chapter a novel method, the Genetic Neural Mathematical Method (GNMM), for the prediction of longitudinal dispersion coefficient is presented. This hybrid method utilizes Genetic Algorithms (GAs) to identify variables that are being input into a Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN), which simplifies the neural network structure and makes the training process more efficient. Once input variables are determined, GNMM processes the data using an MLP with the back-propagation algorithm. The MLP is presented with a series of training examples and the internal weights are adjusted in an attempt to model the input/output relationship. GNMM is able to extract regression rules from the trained neural network. The effectiveness of GNMM is demonstrated by means of case study data, which has previously been explored by other authors using various methods. By comparing the results generated by GNMM to those presented in the literature, the effectiveness of this methodology is demonstrated.


2019 ◽  
Vol 5 (1) ◽  
pp. 83
Author(s):  
Aulia Yudha Prathama

Decision-making in construction design has an important role. The need for estimation tools of planning and project management aspects needs to develop. This paper discussed the benefits of artificial neural network methodology to overcome the problem of estimated the needs of the volume of wall paired, ceiling worked pairing, and ceramic floor pairing for architectural work at the designed stage of the building. The average architecture cost of state building is 29%-51% of total construction value. Data from 15 projects was used for being trained and tested by Artificial Neural Network (ANN) methods with 5 design input variables. The ANN helped to estimate the value of volume requirement on the architectural working of Pratama Hospital building project in remote areas of Indonesia. Those input variables include building area, average column span distance, the height of the building, the shape of the building, and a number of inpatient rooms. From ANN simulation, the best empirical equation of P2V5 modeling was used to predict the need of hospital architecture work volume at conceptual stage with best ANN structure 5-9-3 (5 input variables, 1 hidden layer with 9 neurons and 3 output) with result of estimation accuracy a maximum of 96.40% was reached.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Kanda Edwin Kimutai ◽  
Kipkorir Emmanuel Chessum ◽  
Kosgei Job Rotich

River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water pollution. Artificial neural network (ANN) has gained popularity in water quality forecasting. This study aimed at assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 monthly values for the input variables and output variable from 2009–2013 which were split into training and testing datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The dissolved oxygen values follow seasonal trend with low values during dry periods.


2021 ◽  
Author(s):  
Miguel Abambres ◽  
He J

<p>Corrugated webs are used to increase the shear stability of steel webs of beam-like members and to eliminate the need of transverse stiffeners. Previously developed formulas for predicting the shear strength of trapezoidal corrugated steel webs, along with the corresponding theory, are summarized. An artificial neural network (ANN)-based model is proposed to estimate the shear strength of steel girders with a trapezoidal corrugated web, and under a concentrated load. 210 test results from previous published research were collected into a database according to relevant test specimen parameters in order to feed the simulated ANNs. Seven (geometrical and material) parameters were identified as input variables and the ultimate shear stress at failure was considered the output variable. The proposed ANN-based analytical model yielded maximum and mean relative errors of 0.0% for the 210 points from the database. Moreover, still based on those points, it was illustrated that the ANN-based model clearly outperforms the other existing analytical models, which yield mean errors larger than 13%.</p>


2018 ◽  
Author(s):  
Miguel Abambres ◽  
Jun He

Corrugated webs are used to increase the shear stability of steel webs of beam-like members and to eliminate the need of transverse stiffeners. Previously developed formulas for predicting the shear strength of trapezoidal corrugated steel webs, along with the corresponding theory, are summarized. An artificial neural network (ANN)-based model is proposed to estimate the shear strength of steel girders with a trapezoidal corrugated web, and under a concentrated load. 210 test results from previous published research were collected into a database according to relevant test specimen parameters in order to feed the simulated ANNs. Seven (geometrical and material) parameters were identified as input variables and the ultimate shear stress at failure was considered the output variable. The proposed ANN-based analytical model yielded maximum and mean relative errors of 0.0% for the 210 points from the database. Moreover, still based on those points, it was illustrated that the ANN-based model clearly outperforms the other existing analytical models, which yield mean errors larger than 13%.


Sign in / Sign up

Export Citation Format

Share Document