Geographical Distribution of Cutaneous Leishmaniasis and Its Relationship With Climate Change in Southeastern Morocco

Author(s):  
Abdelkrim Ben Salem ◽  
Ahmed Karmaoui ◽  
Souad Ben Salem ◽  
Ali Ait Boughrous

The current chapter deals with one of the most neglected tropical diseases in Morocco, the cutaneous leishmaniasis. It is based on 10-year research (2010-2017) on the evolution of leishmaniasis taking climate change into account. Epidemiological and climatological data were collected from different administrations. The Geographic Information System (GIS) is chosen for interpolation, space-time analysis of climate data and map creation. The SPSS software was used for statistical analysis and to establish the relationship between Leishmaniasis and climatic conditions. Results show that the maximum number of cases is recorded in 2010 with 4,407 people affected while the low number is recorded in 2014 with 18 cases. Results also show a clear link between climatic factors and the incidence of the disease. The distribution of the disease in the province is influenced by maximum temperature, aridity, and vegetation cover. Additionally, anthropogenic factors play a significant role in explaining the emergence or re-emergence of leishmaniasis in the region.

1992 ◽  
Vol 43 (3) ◽  
pp. 751 ◽  
Author(s):  
M Bounejmate ◽  
AD Robson ◽  
PE Beale

An ecogeographic survey was conducted in six key agricultural zones in Morocco to study the relationship between the natural distribution of medic species and soil and climatic measurements. At each of the 161 sites visited, the presence of medic species was recorded, and soil samples collected. Climatic data were obtained from published records. The influence of soil factors on the presence of medic species was more important than that of climate. With the exception of M. truncatula and M. minima, there were significant soil differences between sites where a species was present and sites where it was absent. Only 5 of the 11 medic species recorded were affected by one or more of the three climatic factors considered. Medics were found most frequently on sites where minimum temperature range was 3-7�C, pH 6.6-7.5, and with the exception of M. littoralis and M. laciniata, maximum temperature 30-35�C and rainfall 300-600 mm. M. truncatula was widespread and tolerant of a wide range of edapho-climatic conditions. It was concluded that this well studied species should be given higher priority in future evaluation programs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


Author(s):  
O. J. Kehinde ◽  
A. T. Adeboyejo

Susceptibility to ill health among aged people had been linked with climate change impacts in rapidly urbanising cities. Therefore, this study evaluates to the vulnerability of aged people to the health impacts of climate change in Ibadan, Nigeria. Data on clinically diagnosed climate related diseases (CRDs) (2000 – 2014) among aged people (>50 years) and temperature and rainfall parameters (1970 – 2007) in Ibadan were obtained and projected to year 2050. Also, the relationship between the climatic parameters and incidence of the five most prevalent CRDs were analysed using multiple regression. The increasing trend of mean maximum temperature (r = 0.47) and rainfall (r = 0.15) is associated with incidences of hypertension (34.4%), respiratory diseases (21.2%) and diarrhoea (14.3%) among aged people (> 60 years), mostly male folk (67.2%). The linear composite of disease communalities extracted 84.0% variance of the data set with the following component scores: skin disease (0.98), hypertension (0.96), respiratory disease (0.92), diarrhoea (0.89) and malaria (0.45). Further, CRDs (R2 = 27%, p = 0.012) in Ibadan among aged people could be significantly attributed to influences of climatic parameters. The study suggests building aged peoples’ resilience to emanating impacts through health and nutritional improvement programs, and re-introduction of neighbourhood parks and gardens.


Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Dilawar Khan ◽  
Muhammad Atif Muneer ◽  
Zaib-Un- Nisa ◽  
Sher Shah ◽  
Muhammad Amir ◽  
...  

Climate change has become a global concern for scientists as it is affecting almost every ecosystem. Larix gmelinii and Betula platyphylla are native and dominant forest species in the Daxing’anling Mountains of Inner Mongolia, playing a major role in carbon sequestration of this region. This study was carried out to assess the effect of climate variables including precipitation and temperature on the biomass of Larix gmelinii and Betula platyphylla forests. For this purpose, we used the climate-sensitive stem biomass allometric model for both species separately to find out accurate stem biomass along with climatic factors from 1950 to 2016. A total of 66 random plots were taken to attain the data from this study area. Larix gmelinii and Betula platyphylla stem biomass have a strong correlation with annual precipitation (R2 = 0.86, R2 = 0.71, R2 = 0.79, and R2 = 0.59) and maximum temperature (R2 = 0.76, R2 = 0.64, R2 = 0.67, and R2 = 0.52). However, annual minimum temperature (R2 = 0.58, R2 = 0.43, R2 = 0.55, and R2 = 0.46) and annual mean temperature (R2 = 0.40, R2 = 0.22, R2 = 0.36, and R2 = 0.19) have a relatively negative impact on tree biomass. Therefore, we suggest that both species have a very strong adaptive nature with climatic variation and hence can survive under drought and high-temperature stress climatic conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


2018 ◽  
Author(s):  
Collin B. Edwards ◽  
Louie Yang

AbstractSeveral studies have documented a global pattern of phenological advancement that is consistent with ongoing climate change. However, the magnitude of these phenological shifts is highly variable across taxa and locations. This variability of phenological responses has been difficult to explain mechanistically. To examine how the evolution of multi-trait cueing strategies could produce variable responses to climate change, we constructed a model in which organisms evolve strategies that integrate multiple environmental cues to inform anticipatory phenological decisions. We simulated the evolution of phenological cueing strategies in multiple environments, using historic climate data from 78 locations in North America and Hawaii to capture features of climatic correlation structures in the real world. Organisms in our model evolved diverse strategies that were spatially autocorrelated across locations on a continental scale, showing that similar strategies tend to evolve in similar climates. Within locations, organisms often evolved a wide range of strategies that showed similar response phenotypes and fitness outcomes under historical conditions. However, these strategies responded differently to novel climatic conditions, with variable fitness consequences. Our model shows how the evolution of phenological cueing strategies can explain observed variation in phenological shifts and unexpected responses to climate change.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


2013 ◽  
Vol 7 (2) ◽  
pp. 3-18 ◽  
Author(s):  
Patrick Howard

In no other time in human history has the relationship between human beings, and the biosphere on which we depend, been fraught with such a sense of urgency. Responding to the imminent threat of climate change has focussed our attention on education. There has been a proliferation of international, national and regional programs designed to change attitudes, behaviours, and beliefs associated with the causes of climate change. This paper will look to phenomenology and pedagogy to attempt describe the experience of climate and to help us consider how we may allow the young to live in a time of inevitable climate disruption while  nurturing what seems to come to them naturally, an embodied integration into the wonder and awe of the places they live.  Also, this paper explores two dominant approaches to climate change education and asks how these approaches articulate an understanding of the essential relationship between humans and the larger living world as reflected through changing climatic conditions. 


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
E. Marie Muehe ◽  
Tianmei Wang ◽  
Carolin F. Kerl ◽  
Britta Planer-Friedrich ◽  
Scott Fendorf

Abstract Projections of global rice yields account for climate change. They do not, however, consider the coupled stresses of impending climate change and arsenic in paddy soils. Here, we show in a greenhouse study that future conditions cause a greater proportion of pore-water arsenite, the more toxic form of arsenic, in the rhizosphere of Californian Oryza sativa L. variety M206, grown on Californian paddy soil. As a result, grain yields decrease by 39% compared to yields at today’s arsenic soil concentrations. In addition, future climatic conditions cause a nearly twofold increase of grain inorganic arsenic concentrations. Our findings indicate that climate-induced changes in soil arsenic behaviour and plant response will lead to currently unforeseen losses in rice grain productivity and quality. Pursuing rice varieties and crop management practices that alleviate the coupled stresses of soil arsenic and change in climatic factors are needed to overcome the currently impending food crisis.


Sign in / Sign up

Export Citation Format

Share Document