Use of Wastage Biomaterial/Biomass for Wastewater Treatment and Modeling

Author(s):  
Biswajit Singha

Recently, the existence of toxic materials in our environment has caused severe concern to the living organism. The main causes for the contamination of such toxic materials in the environment are rapid industrialization and agricultural activities. The different toxic entities present in the environment mainly depend on the nature of the industry. However, some of the common generated toxic pollutants present in the water bodies are heavy metal ions, phenol, dyes, pesticides, insecticides, detergents, and a wide spectrum of aromatic compounds. Among those substance, heavy metals have been reported the major one for the last few decades. So, these heavy metals must be removed from the environment by proper techniques to save the society. The chapter deals with the different toxic material removal technologies and mathematical modeling.

2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Prashant Agarwal ◽  
Ritika Gupta ◽  
Neeraj Agarwal

Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.


2017 ◽  
Vol 262 ◽  
pp. 466-470 ◽  
Author(s):  
Zhen Yuan Nie ◽  
Hong Chang Liu ◽  
Jin Lan Xia ◽  
Huan Liu ◽  
Yun Lu Cui ◽  
...  

Adaption to the energy substrates and heavy metals by bioleaching micoorganisms is the prerequisite for efficient microbe-mineral interaction in bioleaching process. It is known extracellular polymer substances (EPSs) take important role in mediating the adaption to and action on energy substrates and heavy metals. This report presents the evolution of compositions and contents of the major components of EPSs of the typical bioleaching microorganisms (Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Acidianus manzaensis,) exposed to different energy substrates and heavy metal ions. These strains were acclimated firstly to Fe2+ substrate, and then on the substrates elemental sulfur (S0), pyrite and chalcopyrite, respectively. It was found that the major components of capsule and slime EPSs in terms of proteins, polysaccharides, as well as uronic acids were quite different in contents for the Fe2+-acclimated strains, and they even changed more when the Fe2+-acclimated strains were further acclimated to the other substrates. When exposed to heavy metals, all strains demonstrated much decrease in contents of capsule EPSs, and much increase in slime EPSs contents and the heavy metals were found to bound to the slime parts. It was for the first time the EPSs of the bioleaching strains were fractionated into capsule part and slime part, and it was also for the first time we found the differences in evolution of compositions and contents of the major organic components as well as the inorganic matter of capsule EPSs and slime EPSs when the bioleaching strains were exposed to different energy substrates and heavy metals.


2021 ◽  
Vol 904 (1) ◽  
pp. 012009
Author(s):  
A W Abd Byty ◽  
M A Gharbi ◽  
A H Assaf

Abstract Toxic metal pollutants in groundwater should be identified to prevent future health risks. In this paper, the presence of heavy metals in groundwater in the western region of Iraq was investigated. The heavy metals concentrations, including Ni2+, Co2+, Zn2+, Pb2+, Cr3+, Cd2+, As3+ and Hg2+ were explored in twenty selected aquifers near Rutba City and the results were presented as spatial distribution maps. Findings indicate that contamination with the investigated heavy metal ions possesses a serious threat to the study area’s groundwater quality when compared to WHO and IEPA guideline values. Thus, a new approach to remove or adsorb heavy metal ions can be developed for large-scale production and the safe use of these aquifers water. Results revealed that the highest concentrations in mg/L1 of 2.312 in w19, 1.098 in w2, 5.78 in w17, 0.292 in w9, 3.349 in w5, 0.32 in w13, 0.074 in w11 and 5.622 in w1 for Zn2+, Cr3+, As3+, Pb2+, Ni2+, Co2+, Cd2+ and Hg2+ were recorded, respectively.


2018 ◽  
Vol 70 ◽  
pp. 11-23 ◽  
Author(s):  
Oleg Marenkov ◽  
Mykola V. Prychepa ◽  
Julia Kovalchuk

In the experiment with marbled crayfishProcambarusvirginalis(Lyko, 2017), chronic effects of various concentrations of heavy metal ions on the physiological state and enzyme activity were investigated. The obtained results showed that among the investigated heavy metals nickel ions influenced the weight indexes and mortality of crustaceans the most negatively. According to the results of the research, significant changes were noted in the individual biochemical parameters of marbled crayfish under the influence of manganese, lead and nickel ions. The most significant changes in the activity of lactate dehydrogenase were detected in muscle tissues affected by manganese and nickel ions. A significant decrease in the activity of succinate dehydrogenase in muscle of marbled crayfish was determined after the action of heavy metal ions. Investigation of changes in the activity of alkaline phosphatase under the influence of the ions of manganese, lead and nickel has its own characteristics, which indicates certain violations in the tissues of cell membranes. Changes in the activity of enzymes were also reflected in the overall protein content. Changes in these parameters may indicate a rapid biochemical response of crustaceans to the toxic effects of heavy metals.


2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


Author(s):  
А.К. Стрелков ◽  
С.В. Степанов ◽  
О.Н. Панфилова ◽  
А.В. Арбузов

Представлены результаты исследований сорбции ионов тяжелых металлов глиносодержащими сорбентами из сточных вод гальванического производства. Цель испытаний, проведенных на пилотной установке, – разработка технологической схемы для доочистки сточных вод от ионов тяжелых металлов и извлечения отработанного сорбента с применением намывного патронного фильтра со слоем перлита. В испытаниях использовались: термически модифицированный сорбент на основе природных материалов – модифицированная глина, а также смесевый сорбент, состоящий из монтмориллонита, торфа и доломита в соотношении 5:4:1 без термической обработки. Исследования проводились по восьми ионам тяжелых металлов в диапазоне низких концентраций, характерных для сточных вод, поступающих на доочистку после отстаивания с корректировкой рН. Основные технологические параметры доочистки: pH8; продолжительность контакта сорбента с обрабатываемыми водами 90 мин, доза сорбентов 1–1,6 г/л. Отделение отработанного сорбента от очищенной воды было предусмотрено в две ступени – отстаиванием и фильтрованием на патронном намывном фильтре. Введение коагулянта «Аква-АуратÔ-30» дозой 40 мг/л по Al2O3 позволило снизить концентрацию взвешенных веществ в осветленных сточных водах, подаваемых на намывные фильтры, до 8 мг/л для модифицированной глины и 15 мг/л для смесевого сорбента. Удельная производительность намывного слоя составила 23 м3/(ч×м2), расчетная удельная нагрузка по взвеси на поверхность фильтра составила для модифицированной глины 850 г/м2, для смесевого сорбента – 680 г/м2. Расчетная продолжительность фазы фильтрования намывного слоя при использовании предварительного реагентного отстаивания составила 4,6 и 2 ч для модифицированной глины и смесевого сорбента соответственно. Обеспечена эффективность очистки сточных вод от ионов тяжелых металлов на уровне ПДК для водных объектов рыбохозяйственного значения. The results of studies of the sorption of heavy metal ions by clay-containing sorbents from plating effluents are presented. The purpose of the tests carried out in a pilot plant was developing a process scheme for the removal of heavy metal ions from effluents and extraction of the spent sorbent in a precoat cartridge filter with a layer of perlite. The materials used in the tests were as follows: thermally modified sorbent based on natural material, i. e., modified clay, as well as mixed sorbent consisting of montmorillonite, peat and dolomite in a ratio of 5:4:1 without heat treatment. The studies were carried out on eight ions of heavy metals in the low concentration range typical for the effluent coming for tertiary treatment after sedimentation with pH adjustment. The main process parameters of tertiary treatment were: pH 8; the duration of the sorbent contact with the effluent was 90 min, the dose of sorbents was 1–1.6 g/l. The separation of the spent sorbent from the effluent was executed in two stages – sedimentation and filtration in a precoat cartridge filter. The addition of Aqua-AuratTM-30 coagulant with a dose of 40 mg/l as Al2O3provided for reducing the concentration of suspended solids in the clarified effluent supplied to the precoat filters to 8 mg/l for modified clay and 15 mg/l for the mixed sorbent. The specific productivity of the alluvial layer was 23 m3/(h‧m2), the specific load of the suspension on the filter surface was 850 g/m2for modified clay, and 680 g/m2 for mixed sorbent. The estimated duration of the filtration phase of the alluvial layer while using preliminary chemical sedimentation was 4.6 and 2 h for the modified clay and mixed sorbent, respectively. The efficiency of removing heavy metal ions from effluents was provided at the level of the maximum permissible concentration for fishery water bodies.


Heavy metals are the most important pollutants that are non-biodegradable and increasingly accumulate in the environment. Phytoremediation can be defined as the use of plants for the extraction, immobilization, containment, or degradation of contaminants. It provides an ecologically, environmentally sound and safe method for restoration and remediation of contaminated land. Plant species vary in their capacity of hyper-accumulation of heavy metals. The chapter reviews the current findings on the molecular mechanism involved in heavy metals tolerance, which is a valuable tool for phytoremediation. The heavy metal tolerance genes help in the hyper-accumulation trait of a plant. Heavy metal transporter ATPases (HMAs) genes help in the refluxing of heavy metal ions from the cytosol, either into the apoplast, the vacuole, or other organelles, which help in the hyperaccumulation of metal. Understanding the signaling mechanism of transporter genes will be an important tool to understand the genetics of hyperaccumulation.


Sign in / Sign up

Export Citation Format

Share Document