Design of a Prosthetic Ankle Complex

Author(s):  
Dheeman Bhuyan ◽  
Kaushik Kumar

Nature has, over a large span of geological time, engineered near perfect solutions to most problems humans face today. Motion of the limbs is one such area, and the cutting edge in the development of effective prostheses is biomimetics. Limb prostheses have been used by mankind for the better part of known history, and most of the technology currently available in prosthetics is not exclusively new. However, modern prosthetics either are uncomfortable—and the lack of flexion affects the gait of the patient—or too expensive for a large segment of the populace. This chapter seeks to study the mimicry of physiological systems through the design for an ankle prosthesis that includes a passive damper and mimics the shape and behavior of the natural ankle joint.

Author(s):  
Dheeman Bhuyan ◽  
Kaushik Kumar

Nature has, over a large span of geological time, engineered near perfect solutions to most problems humans face today. Motion of the limbs is one such area, and the cutting edge in the development of effective prostheses is biomimetics. Limb prostheses have been used by mankind for the better part of known history, and most of the technology currently available in prosthetics is not exclusively new. However, modern prosthetics either are uncomfortable—and the lack of flexion affects the gait of the patient—or too expensive for a large segment of the populace. This chapter seeks to study the mimicry of physiological systems through the design for an ankle prosthesis that includes a passive damper and mimics the shape and behavior of the natural ankle joint.


2017 ◽  
Vol 44 ◽  
pp. 75-82 ◽  
Author(s):  
Prashant K. Jamwal ◽  
Shahid Hussain ◽  
Yun Ho Tsoi ◽  
Mergen H. Ghayesh ◽  
Sheng Quan Xie

Author(s):  
Tian Yu ◽  
Andrew Plummer ◽  
Pejman Iravani ◽  
Jawaad Bhatti

This paper presents the design and modelling of a new powered ankle prosthesis which combines electrohydrostatic actuation with a controllable passive damper. The new powered ankle prosthesis can switch quickly between passive mode and powered assistance mode, and is intended to just give assistance at certain points within the gait cycles, such as during toe push-off. The design concept and a prototype built to demonstrate the concept are presented. A simulation model was developed to help analyse the performance characteristics. The structure and parameterisation of the simulation model are described. A comparison between simulation results and experiment results is undertaken in order to validate the model and assist in the optimisation of the design. Some results from an initial trial with amputees are included in the paper. According to subjective feedback from the amputees, the new powered ankle prosthesis provides sufficient force at push-off to assist with walking. Future investigations will be focusing on the compactness, weight reduction and control of the powered ankle prosthesis.


2014 ◽  
Vol 578-579 ◽  
pp. 1170-1176 ◽  
Author(s):  
Xue Jun Zhou ◽  
Rong Qian Yang ◽  
Xiao Ma ◽  
Yuan Xu

Complex structural pattern and behavior of Large-span steel structure result in famous research of health monitoring technology of this kind structure all over the world. Health monitoring to key parts of large-span steel structures during the construction and service process grasp the stress situation, which can ensure the safety of structures. In this paper, health monitoring project of Jinan Olympic Sports Center is introduced and the basis of test points’ layout is elaborated in detail. The result shows that the system designed is running stable, which means it has certain application value to other health monitoring to major engineering.


1983 ◽  
Vol 12 (2) ◽  
pp. 69-80 ◽  
Author(s):  
P M Calderale ◽  
A Garro ◽  
R Barbiero ◽  
G Fasolio ◽  
F Pipino

The load bearing joints of the human body and particularly the ankle are often seriously damaged because of different pathological events. During the last 10 years a lot of total ankle prostheses have been studied and implanted, in consequence of the inadequate results obtained by arthrodesis (i.e. the fusion of the joint). The aim of this paper is to analyze mechanical features (functional, kinematic, and strength) of the ankle joint in order to provide optimized design criteria of an arthroprosthesis substituting the disabled joint.


Author(s):  
R. Franci ◽  
V. Parenti-Castelli

This paper presents a new equivalent spatial mechanism for the passive motion simulation at the human ankle complex joint. The mechanism is based on the geometry of the main anatomical structures of the ankle complex, such as the shape of the talus and tibio/fibula bones at their interface, and the TiCal and CaFil ligament lengths. In particular, three sphere-to-sphere contact points at the interface have been identified and isometric fibers of both TiCal and CaFil ligaments have been considered to devise the equivalent mechanism. The proposed mechanism is a fully-parallel mechanism of type 5-5 with one degree of freedom. A procedure for the optimal synthesis of the mechanism is given. Simulation results compared with experimental data show the efficiency of the proposed mechanism to replicate the ankle passive motion, and also to reflect at the same time the main anatomical structures of the ankle joint. The new mechanism is believed to be a useful tool for both pre-operation planning and prosthesis design.


2019 ◽  
Vol 59 (4) ◽  
pp. 1049-1058 ◽  
Author(s):  
Michael W Sears ◽  
Eric A Riddell ◽  
Travis W Rusch ◽  
Michael J Angilletta

Abstract Over the past decade, ecologists and physiologists alike have acknowledged the importance of environmental heterogeneity. Meaningful predictions of the responses of organisms to climate will require an explicit understanding of how organismal behavior and physiology are affected by such heterogeneity. Furthermore, the responses of organisms themselves are quite heterogeneous: physiology and behavior vary over different time scales and across different life stages, and because physiological systems do not operate in isolation of one another, they need to be considered in a more integrated fashion. Here, we review case studies from our laboratories to highlight progress that has been made along these fronts and generalizations that might be made to other systems, particularly in the context of predicting responses to climate change.


1995 ◽  
Vol 16 (10) ◽  
pp. 633-636 ◽  
Author(s):  
Beat Hintermann ◽  
Benno M. Nigg

The purpose of this study was to quantify the effect of selective arthrodesis (stabilization) of the ankle, subtalar, and talonavicular joints on the rotational movement of the tibia and the calcaneus occurring with dorsiflexion/plantarflexion. Six cadaver foot-leg specimens were investigated using an unconstrained testing apparatus. Simulated ankle joint arthrodesis caused a large increase in tibial rotation and calcaneal eversion-inversion. Subtalar and talonavicular stabilization did not cause as large a rotation.


This resource provides information from numerous levels of analysis including molecular biology and genetics, cellular physiology, neuroanatomy, neuropharmacology, epidemiology, and behavior. In doing so it translates information from the basic laboratory to the clinical laboratory and finally to clinical treatment. The result is an excellent and cutting-edge resource for psychiatric residents, psychiatric researchers and doctoral students in neurochemistry and the neurosciences.


Sign in / Sign up

Export Citation Format

Share Document