Implementation of a RFID-based System for Library Management

Author(s):  
Kiyotaka Fujisaki

Using electromagnetic coupling, an RFID tag can get power supplier by a reader and communicate with it for data exchange. Because the RFID system enables non-contact communication, various services and applications including the management of a library catalogue are possible. However, the system is affected easily by neighboring environment and the resonant frequency, thus the communication performance is degraded. In this paper, is used 13.56MHz RFID system for the management of the library. We evaluate the influence that papers or other RFID tags give to the resonant frequency of an RFID tag.

2011 ◽  
Vol 314-316 ◽  
pp. 1325-1329
Author(s):  
Lei Xu ◽  
Hui Ming Huang

Radio frequency identification (RFID) technology may be applied to cylindrical objects, but the curving of an RFID tag brings on an increase in resonant frequency of the tag antenna. The tag can not function in an excessively curving case, since the deviation of the antenna resonant frequency from working frequency makes a reduction in inductive energy supplied by a transmitter. The variation in antenna resonant frequency is dependant upon column radius of the cylinder and curving angle of the tag. Analytically, it is found that a reduction in central distance, which is determined by column radius and curving angle, between compound straight tracks leads to the decreasing of overall antenna-coil inductance after the curving of the tag. By introducing a curving turn exponent, the overall antenna-coil inductance is calculated. After neglecting the less variation in overall tag capacitance, the antenna resonant frequency may be estimated. The result provides an instruction for designing a curving tag antenna to fit the tag antenna resonant frequency for working frequency of an RFID system.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lingyun Zhao ◽  
Lukun Wang ◽  
Shan Du

In large-scale Internet of Things (IoT) applications, tags are attached to items, and users use a radiofrequency identification (RFID) reader to quickly identify tags and obtain the corresponding item information. Since multiple tags share the same channel to communicate with the reader, when they respond simultaneously, tag collision will occur, and the reader cannot successfully obtain the information from the tag. To cope with the tag collision problem, ultrahigh frequency (UHF) RFID standard EPC G1 Gen2 specifies an anticollision protocol to identify a large number of RFID tags in an efficient way. The Q -algorithm has attracted much more attention as the efficiency of an EPC C1 Gen2-based RFID system can be significantly improved by only a slight adjustment to the algorithm. In this paper, we propose a novel Q -algorithm for RFID tag identification, namely, HTEQ, which optimizes the time efficiency of an EPC C1 Gen2-based RFID system to the utmost limit. Extensive simulations verify that our proposed HTEQ is exceptionally expeditious compared to other algorithms, which promises it to be competitive in large-scale IoT environments.


2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Guesmi Chaouki ◽  
Abdelhak Ferchichi ◽  
Ali Gharsallah

AbstractIn this paper, we present a novel fractal antenna for radiofrequency identification (RFID) tags. The proposed antenna has a resonant frequency equal to 2.45GHz and circular polarization. The fractal technique was very useful to obtain a miniaturization of antenna size by more than 30%. The gain and directivity of the antenna are acceptable for the desired RFID application. All the results are obtained using CST Microwave simulation tool.


2018 ◽  
Vol 9 (2) ◽  
pp. 97-105
Author(s):  
Richard Firdaus Oeyliawan ◽  
Dennis Gunawan

Library is one of the facilities which provides information, knowledge resource, and acts as an academic helper for readers to get the information. The huge number of books which library has, usually make readers find the books with difficulty. Universitas Multimedia Nusantara uses the Senayan Library Management System (SLiMS) as the library catalogue. SLiMS has many features which help readers, but there is still no recommendation feature to help the readers finding the books which are relevant to the specific book that readers choose. The application has been developed using Vector Space Model to represent the document in vector model. The recommendation in this application is based on the similarity of the books description. Based on the testing phase using one-language sample of the relevant books, the F-Measure value gained is 55% using 0.1 as cosine similarity threshold. The books description and variety of languages affect the F-Measure value gained. Index Terms—Book Recommendation, Porter Stemmer, SLiMS Universitas Multimedia Nusantara, TF-IDF, Vector Space Model


Author(s):  
Alireza Babaei ◽  
Johné Parker ◽  
Paria Moshaver

Abstract Understanding the effect of design parameters on resonant frequency variation is a critically important aspect of piezoelectric energy harvester device design. As a first step in more accurately investigating the performance of a fixture designed for targeted RFID tag communication that also utilizes an energy harvesting application, this paper analyzes the variations in resonant frequency of a higher-order beam based on Reddy-Levinson theory (RLBT) under rotation effects. A long-term goal of this research is to implement an effective energy harvester on the RFID system. Part of the experimental RFID test fixture can be modeled as a beam (or beam element); thus, understanding the resonance frequency variations due to shear deformation and rotation effects is an important first step in obtaining information about the efficacy of the fixture in serving as an energy harvester. Investigating the performance of a beam also provides valuable information about the maximum power, frequency bandwidth, and tuning ability of the device that can be expected from an analogous energy harvester. For the first time, the resonant frequency variation of a rotating thick beam is investigated. Specifically, RLBT is used to verify the effects of shear deformation upon resonant frequency, and a coupled displacement field is utilized to enable tuning the potential piezoelectric energy harvester to low-input excitations by means of constraining translational and rotational movements of the system based on a linear constraint equation. Navier’s method as an analytical-numerical method is adopted to discretize the continuous system and to find resonant frequencies, respectively. Results reveal the significance of beam thickness and rotation effects of the proposed model for the purpose of minimizing energy usage. Current results are compared and verified numerically with available benchmarks to confirm a satisfactory level of accuracy. The proposed model, which is based on a coupled displacement field, can also be used to design other piezoelectric electro-mechanical-systems; e.g., vibration isolators, and vibration controllers. In other words, in an energy-scavenging system, a fundamental understanding of parameters affecting the resonant frequency can be accomplished through the presented analysis. The proposed model highlights the fact that, by adopting a proper speed factor, tuning the piezoelectric energy harvester to low-input excitations is possible. Additionally, it is observed that the rotation effect on the resonant frequency is more severe than effects of slenderness ratio. Finally, in this paper an improved model is proposed to capture the shear deformation effect, particularly for thick-beam energy harvesters, with the capability of tuning to low-input excitations.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Han He ◽  
Lauri Sydänheimo ◽  
Johanna Virkki ◽  
Leena Ukkonen

We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.


RFID is a short distance communication system which comprises of a RFID tag, a RFID reader and a personal computer with desired software that can maintain the related information. These RFID tags can be of active or passive types. This paper focuses on design, simulation and fabrication of passive ultra-high frequency RFID tag (microchip and an antenna) which resonates at the frequency 866 MHz in the Industrial Scientific Medical Band. The nested H-slot inverted-F microstrip antenna structure is used for the design of passive RFID tag. It examines the specific tag geometry and its characteristics to optimize the PIFA antenna and in turn RFID tag’s performance.


2019 ◽  
Vol 8 (2) ◽  
pp. 4298-4301

To provide a comfort, tension free, straightforward approach of traveling and conjointly to scale back the man power. SRTS involves the effective usage of RFID tags and Reed sensor to make ticketing better, through which the tag holds the identity of the card holder and Reed sensor, comprising a sensor and magnet to determine the distance travelled by the user. RFID Tag can be used by the user for just entering and leaving the bus. Depending on the distance which is travelled by the user, money will be deducted from the card well in advance. An object counter is placed adjacently to detect the number of persons entering the transport vehicle


2008 ◽  
Vol 07 (01) ◽  
pp. 9-14 ◽  
Author(s):  
Selwyn Piramuthu

Radio Frequency Identification (RFID) is promising, as a technique, to enable tracking of essential information about objects as they pass through supply chains. Information thus tracked can be utilised to efficiently operate the supply chain. Effective management of the supply chain translates to huge competitive advantage for the firms involved. Among several issues that impede seamless integration of RFID tags in a supply chain, one of the problems encountered while reading RFID tags is that of collision, which occurs when multiple tags transmit data to the same receiver slot. Data loss due to collision necessitates re-transmission of lost data. We consider this problem when Framed Slotted ALOHA protocol is used. Using machine learning, we adaptively configure the number of slots per frame to reduce the number of collisions while improving throughput.


2012 ◽  
pp. 1873-1884
Author(s):  
Álvaro M. Sampaio ◽  
António J. Pontes ◽  
Ricardo Simões

Full traceability of products is extremely difficult, although it has been sought after for as long as production, distribution and sales chains exist. Electronic traceability methods, such as RFID technology, have been proposed as a possible solution to this problem. In the specific case of RFID, the number of applications that promote innovative solutions in retail and other areas has been continuous growing. However, RFID tags are mostly placed externally on a surface of products or their packages. This is appropriate for logistics, but not for other applications, such as those involving user interaction. In those, not only is the placement of the RFID tag more complex, but it is also necessary that the tag is not visible or not directly accessible, to prevent accidental damage and intentional abuse. This certainly imposes challenges to manufacturing, but mainly creates new challenges to the development of new products and re-design of existing ones. This chapter presents some insights and what we consider to be the two main approaches to incorporating RFID technology into consumer products.


Sign in / Sign up

Export Citation Format

Share Document