Energy Resource for a RFID System Based on Dynamic Features of Reddy-Levinson Beam

Author(s):  
Alireza Babaei ◽  
Johné Parker ◽  
Paria Moshaver

Abstract Understanding the effect of design parameters on resonant frequency variation is a critically important aspect of piezoelectric energy harvester device design. As a first step in more accurately investigating the performance of a fixture designed for targeted RFID tag communication that also utilizes an energy harvesting application, this paper analyzes the variations in resonant frequency of a higher-order beam based on Reddy-Levinson theory (RLBT) under rotation effects. A long-term goal of this research is to implement an effective energy harvester on the RFID system. Part of the experimental RFID test fixture can be modeled as a beam (or beam element); thus, understanding the resonance frequency variations due to shear deformation and rotation effects is an important first step in obtaining information about the efficacy of the fixture in serving as an energy harvester. Investigating the performance of a beam also provides valuable information about the maximum power, frequency bandwidth, and tuning ability of the device that can be expected from an analogous energy harvester. For the first time, the resonant frequency variation of a rotating thick beam is investigated. Specifically, RLBT is used to verify the effects of shear deformation upon resonant frequency, and a coupled displacement field is utilized to enable tuning the potential piezoelectric energy harvester to low-input excitations by means of constraining translational and rotational movements of the system based on a linear constraint equation. Navier’s method as an analytical-numerical method is adopted to discretize the continuous system and to find resonant frequencies, respectively. Results reveal the significance of beam thickness and rotation effects of the proposed model for the purpose of minimizing energy usage. Current results are compared and verified numerically with available benchmarks to confirm a satisfactory level of accuracy. The proposed model, which is based on a coupled displacement field, can also be used to design other piezoelectric electro-mechanical-systems; e.g., vibration isolators, and vibration controllers. In other words, in an energy-scavenging system, a fundamental understanding of parameters affecting the resonant frequency can be accomplished through the presented analysis. The proposed model highlights the fact that, by adopting a proper speed factor, tuning the piezoelectric energy harvester to low-input excitations is possible. Additionally, it is observed that the rotation effect on the resonant frequency is more severe than effects of slenderness ratio. Finally, in this paper an improved model is proposed to capture the shear deformation effect, particularly for thick-beam energy harvesters, with the capability of tuning to low-input excitations.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


Author(s):  
Prateek Asthana ◽  
Gargi Khanna

Piezoelectric energy harvesting refers to conversion of mechanical energy into usable electrical energy. In the modern connected world, wireless sensor nodes are scattered around the environment. These nodes are powered by batteries. Batteries require regular replacement, hence energy harvesters providing continuous autonomous power are used to power these sensor nodes. This work provides two different fixation modes for the resonant frequency for the two modes. Variation in geometric parameter and their effect on resonant frequency and output power have been analyzed. These harvesters capture a wide-band of ambient vibrations and convert them into usable electrical energy. To capture random ambient vibrations, the harvester used is a wide-band energy harvester based on conventional seesaw mechanism. The proposed structure operates on first two resonant frequencies in comparison to the conventional cantilever system working on first resonant frequency. Resonance frequency, as well as response to a varying input vibration frequency, is carried out, showing better performance of seesaw cantilever design. In this work, modeling of wide-band energy harvester with proof mass is being performed. Position of proof mass plays a key role in determining the resonant frequency of the harvester. Placing the proof mass near or away from fixed end results in increase and decrease in stress on the piezoelectric layer. Hence, to avoid the breaking of cantilever, the position of proof mass has been analyzed.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 201
Author(s):  
Damiano Alizzio ◽  
Antonino Quattrocchi ◽  
Roberto Montanini

<p class="Abstract">In the interest of our society, for example in Smart City but also in other specific backgrounds, environmental monitoring is an essential activity to measure the quality of different ecosystems. In fact, the need to obtain accurate and extended measurements in space and time has considerably become relevant. In very large environments, such as marine ones, technological solutions are required for the use of smart, automatic, and self-powered devices in order to reduce human maintenance service. This work presents a simple and innovative layout for a small self-powered floating buoy, with the aim of measuring and transmitting the detected data for visualization, storage and/or elaboration. The power supply was obtained using a cantilever harvester, based on piezoelectric patches, converting the motion of ripple waves. Such type of waves is characterized by frequencies between 1.50 Hz and 2.50 Hz with oscillation between 5.0 ° and 7.0 °. Specifically, a dedicated experimental setup was created to simulate the motion of ripple waves and to evaluate the suitability of the proposed design and the performance of the used harvester. Furthermore, a dynamic analytical model for the harvester has been defined and the uncertainty correlated to the harvested power has been evaluated. Finally, the harvested voltage and power have shown how the presented buoy behaves like a frequency transformer. Hence, although the used cantilever harvester does not work in its resonant frequency, the harvested electricity undergoes a significant increase.</p><p class="Abstract"><span lang="EN-US"><br /></span></p>


Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 973
Author(s):  
Marwa S. Salem ◽  
Shimaa Ahmed ◽  
Ahmed Shaker ◽  
Mohammad T. Alshammari ◽  
Kawther A. Al-Dhlan ◽  
...  

One of the most important challenges in the design of the piezoelectric energy harvester is its narrow bandwidth. Most of the input vibration sources are exposed to frequency variation during their operation. The piezoelectric energy harvester’s narrow bandwidth makes it difficult for the harvester to track the variations of the input vibration source frequency. Thus, the harvester’s output power and overall performance is expected to decline from the designed value. This current study aims to solve the problem of the piezoelectric energy harvester’s narrow bandwidth. The main objective is to achieve bandwidth broadening which is carried out by segmenting the piezoelectric material of the energy harvester into n segments; where n could be more than one. Three arrays with two, four, and six beams are shaped with two piezoelectric segments. The effect of changing the length of the piezoelectric material segment on the resonant frequency, output power, and bandwidth, as well as the frequency response is investigated. The proposed piezoelectric energy harvesters were implemented utilizing a finite element method (FEM) simulation in a MATLAB environment. The results show that increasing the number of array beams increases the output power and bandwidth. For the three-beam arrays, at n equals 2, 6 mW output power and a 9 Hz bandwidth were obtained. Moreover, the bandwidth of such arrays covered around 5% deviation from its resonant frequency. All structures were designed to operate as a steel wheel safety sensor which could be used in train tracks.


2014 ◽  
Vol 635-637 ◽  
pp. 928-931
Author(s):  
Shuai Yuan ◽  
Bing Jiang ◽  
Li Juan Chen ◽  
Yu Guo Hao ◽  
Jian Bo Xin ◽  
...  

The ambient energy harvesting based on piezoelectric has become an important subject in recent research publications. A new rectangular-loop piezoelectric energy harvester(RLPEH) is proposed. The characteristic is analyzed by the finite element analysis (FEA) which includes the static analysis, modal analysis and harmonic response analysis. The analysis results show that the RLPEH could reduce the resonant frequency and improve the output voltage. The three order resonant frequency is 18.6Hz, 40.8Hz and 85.4Hz. The output voltage is 42V under 3m/s2 of acceleration and the effective bandwidth is 18.7Hz with output voltage above 10V.


Author(s):  
Wei-Jiun Su ◽  
Jean W. Zu

Piezoelectric material has been widely utilized in vibration-based energy harvesters (VEH). The most common configuration of piezoelectric energy harvester is a cantilevered beam with unimorph or bimorph piezoelectric layers. In this paper, a new configuration of PEH is proposed. Two beams are assembled as V shape with tip masses attached. The first beam is a cantilevered beam with tip mass while the second beam is attached to the end of the first beam with a certain angle. Piezoelectric layers are attached to both beams in unimorph configuration for power generation. The analytical solution is derived based on Euler-Bernoulli beam theory. In this analysis, the angle varies from 0 to 135 degree to see the influence of angle on voltage and power frequency response. The V-shaped VEH is proven to have the second resonant frequency relatively close to the first resonant frequency when compared with conventional cantilevered VEH. Furthermore, the angle between the two beams will influence the ratio of the second to the first resonant frequency. By choosing a suitable angle, the V-shaped structure can effectively broaden the bandwidth.


2020 ◽  
Vol 12 (4) ◽  
pp. 506-512
Author(s):  
Ashok Batra ◽  
Almuatasim Alomari ◽  
James Sampson ◽  
Alak Bandyopadhyay ◽  
Mohan Aggarwal

Piezoelectric energy conversion has received considerable attention for vibration-to-electric energy conversion over the past decade. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure. This paper presents a comparison between unimorph and bimorph cantilever beam having a number of segmented PMN-PT piezo-elements on the input and output power. The numerical simulation was carried out by applying the finite element analysis (FEA) using COMSOL multi-physics software in order to predict output voltage and power over a frequency range of 60–200 Hz for the first resonant frequencies. The simulation results show maximum output voltage and power harvested of 7.38 V and 135.73 μW, respectively, by the unimorph piezoelectric energy harvester at resonant frequency value of 84 Hz with electromechanical coupling factor (ke) of 77.29%. These results highlight that the highest value of the output electrical power can be obtained when the piezoelectric element is attached on the top of a clamped end of a cantilever piezoelectric beam. Moreover, in an unimorph or bimorph cantilever beam system, increasing the number of piezoelectric elements results in a higher resonant frequency shift and significantly decreasing in the harvested power.


2011 ◽  
Vol 483 ◽  
pp. 631-634 ◽  
Author(s):  
Jian Sun ◽  
Yi Gui Li ◽  
Jing Quan Liu ◽  
Chun Sheng Yang ◽  
Dan Nong He ◽  
...  

Piezoelectric energy harvester with high output and low resonant frequency is required in wireless sensors and portable devices. It can be fabricated by bonding of the bulk PZT ceramics with excellent piezoelectric properties to the Si wafer. Firstly, the basic design principles of piezoelectric energy harvester were analyzed. Then, the novel process flow to manufacture piezoelectric energy harvester using bulk PZT was explored. Using 2µm Au layer as the bonding layer, the bulk PZT was bonded to Si wafer at the temperature of 5500C for 2 hours. With the lapping technique, the thickness of bulk PZT is reduced from 300µm to 60µm. KOH was used to etch the backside of Si from 500µm to 20µm as the supporting layer of the piezoelectric beam. The last procedure was to dice the wafer into many cantilevers with different length or width. One of PZT piezoelectric cantilevers was tested using a mechanical shaker, by applying a sinusoidal oscillation at different frequencies. The resonant frequency is 815 Hz, and the voltage output is around 632 mV at 0.5g. The result shows that the sample has excellent ability to harvest energy of vibration and the novel bonding technology is quite feasible.


Sign in / Sign up

Export Citation Format

Share Document