Evaluating the Performance of a Hockey Helmet in Mitigating Concussion Risk Using Measures of Acceleration and Energy During Simulated Free Fall

Author(s):  
Carlos Zerpa ◽  
Stephen Carlson ◽  
Eryk Przysucha ◽  
Meilan Liu ◽  
Paolo Sanzo

Hockey helmets represent the best form of head protection available to reduce the occurrence of skull fracture and concussion. Currently, helmet testing protocols focus on the reduction of peak linear acceleration measures. Gaps exist in analyzing how certain impact factors such as angle, neck stiffness, and location influence the energy loaded to the helmet and the risk of injury during head collisions. This study examined the effect of helmet impact angle, neck stiffness-torque levels, and helmet impact locations on energy reduction and risk of head injury grounded on acceleration measures using simulated free fall head collisions. The researchers conducted 540 impacts to collect the data. The results revealed statistical interaction effects between the angle of impact and location on measures of energy and risk of head injury. This study builds on existing literature by introducing an energy measurement technique to assess helmet performance. The outcome also provides an avenue for helmet manufacturers to evaluate the performance of the helmet in reducing concussion risk.

Author(s):  
Chris Van Ee ◽  
Barbara Moroski-Browne ◽  
David Raymond ◽  
Kirk Thibault ◽  
Warren Hardy ◽  
...  

Only sparse experimental pediatric tissue tolerance data are available for the development of pediatric surrogates and associated injury reference values. The objective of this study is to improve the efficacy of the CRABI series anthropometric test devices by increasing the foundational data used for head injury and skull fracture. To accomplish this, this study evaluated and refined the CRABI-6 injury assessment reference values (IARV) associated with skull fracture by correlating the test device response with the detailed fracture results of 50 infant cadaver drop studies reported by Weber in 1984 and 1985. Using the CRABI-6 test device, four 82-cm height free fall impacts were performed onto each of four different impact surfaces: concrete, carpet, 2-cm foam mat, and an 8-cm thick camel hair blanket. Average and standard deviation of peak head linear acceleration and HIC36 (Head Injury Criteria) were computed for each impact surface. The average CRABI impact response was mapped to the Weber fracture outcomes for corresponding impact surfaces and logistic regression was performed to define a skull fracture risk curve based on exposure. The 5%, 25%, 50%, 75%, and 95% risk for skull fracture correlated with a CRABI-6 peak linear head acceleration of 50, 70, 82, 94, and 114 g’s and a HIC36 of 87, 214, 290, 366 and 493, respectively. This study made use of the most extensive set of controlled infant cadaver head impact and fracture data currently available. Previous head IARVs for the CRABI-6 are given by Melvin (1995) and by Klinich et al. (2002). Based on a review of pediatric tissue experiments, scaling of adult and child dummy IARVs, and sled tests, Melvin suggested a HIC22 of 390 and a limit on peak head acceleration of 50 g’s. Klinich et al. reported the results of three reconstructions of airbag-related infant head injuries and three additional reconstructions not associated with head injury. They estimated the 50% risk of minor skull fracture to be 85 g’s and 220 HIC15. These previously reported estimates appear to be in agreement with the results reported from this study for CRABI-6 IARV of 50% risk of skull fracture at 82 g’s and 290 HIC36.


Author(s):  
Chris Van Ee ◽  
David Raymond ◽  
Kirk Thibault ◽  
Warren Hardy ◽  
John Plunkett

The current head Injury Assessment Reference Values (IARVs) for the child dummies are based in part on scaling adult and animal data and on reconstructions of real world accident scenarios. Reconstruction of well-documented accident scenarios provides critical data in the evaluation of proposed IARV values, but relatively few accidents are sufficiently documented to allow for accurate reconstructions. This reconstruction of a well documented fatal-fall involving a 23-month old child supplies additional data for IARV assessment. The videotaped fatal-fall resulted in a frontal head impact onto a carpet-covered cement floor. The child suffered an acute right temporal parietal subdural hematoma without skull fracture. The fall dynamics were reconstructed in the laboratory and the head linear and angular accelerations were quantified using the CRABI-18 Anthropomorphic Test Device (ATD). Peak linear acceleration was 125 ± 7 g (range 114–139), HIC15 was 335 ± 115 (Range 257–616), peak angular velocity was 57± 16 (Range 26–74), and peak angular acceleration was 32 ± 12 krad/s2 (Range 15–56). The results of the CRABI-18 fatal fall reconstruction were consistent with the linear and rotational tolerances reported in the literature. This study investigates the usefulness of the CRABI-18 anthropomorphic testing device in forensic investigations of child head injury and aids in the evaluation of proposed IARVs for head injury.


Author(s):  
Sukriti Das ◽  
Bipin Chaurasia ◽  
Dipankar Ghosh ◽  
Asit Chandra Sarker

Abstract Background Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity. Economic impact is much worse in developing countries like Bangladesh, as victims are frequently male, productive, and breadwinners of the families. Objectives The objective of our study was to highlight the etiological pattern and distribution of varieties of head injuries in Bangladesh and give recommendations regarding how this problem can be solved or reduce to some extent at least. Methods From January 2017 to December 2019, a total of 14,552 patients presenting with head injury at emergency got admitted in Neurosurgery department of Dhaka Medical College and Hospital and were included in this study. Results The most common age group was 21 to 30 years (36%: 5,239) with a male-to-female ratio of 2.6:1. Injury was mostly caused by road traffic accident (RTA [58.3%: 8,484]), followed by fall (25%: 3,638) and history of assault (15.3%: 2,226). The common varieties of head injury were: acute extradural hematoma (AEDH [42.30%: 1,987]), skull fracture either linear or depressed (28.86%: 1,347), acute subdural hematoma (ASDH [12.30%: 574]), brain contusion (10.2%: 476), and others (6.04%: 282). Conclusion RTA is the commonest cause of TBI, and among them motor bike accident is the severe most form of TBI. AEDH is the commonest variety of head injuries. Proper steps taken by the Government, vehicle owners, and drivers, and proper referral system and prompt management in the hospital can reduce the mortality and morbidity from TBI in Bangladesh.


2014 ◽  
Vol 125 ◽  
pp. 106-108 ◽  
Author(s):  
Shoko Merrit Yamada ◽  
Yoshiro Takaoka ◽  
Hiroshi Matsuura

2020 ◽  
Vol 2 (2) ◽  
pp. 102-112
Author(s):  
Luci Riani Ginting ◽  
Kuat Sitepu ◽  
Renni Ariana Ginting

Head injury is directly or indirectly mechanical injuries that resulted wound in the scalp, skull fracture, tear the lining of the brain, and brain damage, and neurological disorders. The basic method for brain protection of head injury patients are freeing the airway and giving adequate oxygenation. Giving oxygen and headv elevation 30° of head are the appropriate action for the moderate head injury classification to launch the cerebral oxygen perfusion and to increase consciousness level. The purpose of this research were to determine the GCS before and after giving oxygenation with and position 30 ° of head and to analyze the effect of giving oxygen and headv elevation30 °of head to change the levels of consciousness of moderate head injury patients. This research was an Quasi-Experimental study with 10 respondents. The test were used Paired Sample T-test Test. The results showed that there was an effect of giving oxygen and headv elevation 30 °of head toward to change the level of consciousness of moderate head injury patients. GCS average value before was 10.10 and GCS average after 12.90 value was with p value was 0.000. Keywords : Levels of Consciousness GCS, Moderate Head Injury, Position 30° of the Head


2008 ◽  
Vol 74 (9) ◽  
pp. 862-865 ◽  
Author(s):  
Barry E. Mangus ◽  
Luke Y. Shen ◽  
Stephen D. Helmer ◽  
Janae Maher ◽  
R. Stephen Smith

Taser devices were introduced in 1974 and are increasingly used by law enforcement agencies. Taser use theoretically reduces the risk of injury and death by decreasing the use of lethal force. We report a spectrum of injuries sustained by four patients subdued with Taser devices. Injuries identified in our review included: 1) a basilar skull fracture, right subarachnoid hemorrhage, and left-sided epidural hemorrhage necessitating craniotomy; 2) a concussion, facial laceration, comminuted nasal fracture, and orbital floor fracture; 3) penetration of the outer table and cortex of the cranium by a Taser probe with seizure-like activity reported by the officer when the Taser was activated; and 4) a forehead hematoma and laceration. The Taser operator's manual states that these devices are designed to incapacitate a target from a safe distance without causing death or permanent injury. However, individuals may be exposed to the potential for significant injury. These devices represent a new mechanism for potential injury. Trauma surgeons and law enforcement agencies should be aware of the potential danger of significant head injuries as a result of loss of neuromuscular control.


Author(s):  
Hamid M. Lankarani ◽  
C. S. Koshy ◽  
C. K. Thorbole

The compliance with Head Injury Criteria (HIC) specified in 14 CFR 23.562 [1] and CFR 25.562 [2] poses a significant problem for many segments of the aerospace industry. The airlines and the manufacturers of jet transports have made claims of high costs and significant schedule overruns during the development and certification of 16G seats because of the difficulties encountered in meeting this requirement. The current practice is to conduct Full Scale Sled Tests (FSST) on impact sleds. This approach can be expensive, since a new seat may be needed for each test. Moreover, some consider the HIC sensitive to changes in the test conditions, such as sled pulse, seat belt elongation, etc., resulting in HIC results from FSSTs showing poor repeatability. These difficulties make it desirable to devise a cheaper, faster, and more repeatable alternative to FSSTs. This paper describes an attempt to address these issues by designing a device, the National Institute for Aviation Research (NIAR) HIC Component Tester (NHCT) using various multibody tools. This device was then fabricated and its performance evaluated against FSSTs conducted under similar test conditions for some typical impact events that occur in an aircraft cabins e.g. impact with bulkheads. The factors compared for this evaluation are the head impact angle, head impact velocity, HIC, HIC window, peak head C.G. resultant acceleration, average head C.G. resultant acceleration, and head C.G. resultant acceleration profiles. The results of these evaluations show that the NHCT already produces test results that correlate significantly with FSST results for impact targets such as bulkheads and its target envelope is expected eventually to include objects such as seat backs.


2016 ◽  
Vol 124 (3) ◽  
pp. 667-674 ◽  
Author(s):  
John Lloyd ◽  
Frank Conidi

OBJECT Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. METHODS The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. RESULTS Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. CONCLUSIONS The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of all ages, the authors propose thresholds for all sports helmets based on a peak linear acceleration no greater than 90 g and a peak angular acceleration not exceeding 1700 rad/sec2.


2012 ◽  
Vol 116 (1) ◽  
pp. 222-233 ◽  
Author(s):  
Adam Bartsch ◽  
Edward Benzel ◽  
Vincent Miele ◽  
Vikas Prakash

Object Concussion is the signature American football injury of the 21st century. Modern varsity helmets, as compared with vintage leather helmets, or “leatherheads,” are widely believed to universally improve protection by reducing head impact doses and head injury risk for the 3 million young football players in the US. The object of this study was to compare the head impact doses and injury risks with 11 widely used 21st century varsity helmets and 2 early 20th century leatherheads and to hypothesize what the results might mean for children wearing similar varsity helmets. Methods In an injury biomechanics laboratory, the authors conducted front, oblique front, lateral, oblique rear, and rear head impact tests at 5.0 m/second using helmeted headforms, inducing near- and subconcussive head impact doses on par with approximately the 95th percentile of on-field collision severity. They also calculated impact dose injury risk parameters common to laboratory and on-field traumatic neuromechanics: linear acceleration, angular acceleration, angular velocity, Gadd Severity Index, diffuse axonal injury, acute subdural hematoma, and brain contusion. Results In many instances the head impact doses and head injury risks while wearing vintage leatherheads were comparable to or better than those while wearing several widely used 21st century varsity helmets. Conclusions The authors do not advocate reverting to leather headgear, but they do strongly recommend, especially for young players, instituting helmet safety designs and testing standards, which encourage the minimization of linear and angular impact doses and injury risks in near- and subconcussive head impacts.


Author(s):  
M Reaz H Khondoker ◽  
M Arai

There are two commonly used launching methods of free-fall lifeboats: from a skid and from a hook. A free-fall lifeboat, whether it is released from a skid or from a hook, experiences tremendous impact when it enters the water. This impact force, together with other hydrostatic and hydrodynamic forces and moments, affects the motions and accelerations of the boat considerably. In this paper, a comparative study on the behaviours of the skid and hook launching of free-fall lifeboats has been presented. Numerical simulation for different launching methods has been used as a tool to obtain trajectories of the lifeboat for different launching conditions. Also polar diagrams of accelerations are drawn using the data computed for the same conditions. Dynamic response criteria have been used in order to evaluate the risk of injury to the occupants during water entry of the lifeboat.


Sign in / Sign up

Export Citation Format

Share Document