Comparative Study of Neural Network-Based Approaches for QRS Segmentation

Author(s):  
George Kolokolnikov ◽  
Anna Borde ◽  
Victor Skuratov ◽  
Roman Gaponov ◽  
Anastasiya Rumyantseva

The paper is devoted to the development of QRS segmentation system based on deep learning approach. The considered segmentation problem plays an important role in the automatic analysis of heart rhythms, which makes it possible to identify life-threatening pathologies. The main goal of the research is to choose the best segmentation pipeline in terms of accuracy and time-efficiency. Process of ECG-signal analysis is described, and the problem of QRS segmentation is discussed. State-of-the-art algorithms are analyzed in literature review section and the most prominent are chosen for further research. In the course of the research, four hypotheses about appropriate deep learning model are checked: LSTM-based model, 2-input 1-dimensional CNN model, “signal-to-picture” approach based on 2-dimensional CNN, and the simplest 1-dimensional CNN model. All the architectures are tested, and their advantages and disadvantages are discussed. The proposed ECG segmentation pipeline is developed for Holter monitor software.

2020 ◽  
Vol 12 (2) ◽  
pp. 21-34
Author(s):  
Mostefai Abdelkader

In recent years, increasing attention is being paid to sentiment analysis on microblogging platforms such as Twitter. Sentiment analysis refers to the task of detecting whether a textual item (e.g., a tweet) contains an opinion about a topic. This paper proposes a probabilistic deep learning approach for sentiments analysis. The deep learning model used is a convolutional neural network (CNN). The main contribution of this approach is a new probabilistic representation of the text to be fed as input to the CNN. This representation is a matrix that stores for each word composing the message the probability that it belongs to a positive class and the probability that it belongs to a negative class. The proposed approach is evaluated on four well-known datasets HCR, OMD, STS-gold, and a dataset provided by the SemEval-2017 Workshop. The results of the experiments show that the proposed approach competes with the state-of-the-art sentiment analyzers and has the potential to detect sentiments from textual data in an effective manner.


2019 ◽  
Vol 9 (22) ◽  
pp. 4963 ◽  
Author(s):  
Samee Ullah Khan ◽  
Ijaz Ul Haq ◽  
Seungmin Rho ◽  
Sung Wook Baik ◽  
Mi Young Lee

Movies have become one of the major sources of entertainment in the current era, which are based on diverse ideas. Action movies have received the most attention in last few years, which contain violent scenes, because it is one of the undesirable features for some individuals that is used to create charm and fantasy. However, these violent scenes have had a negative impact on kids, and they are not comfortable even for mature age people. The best way to stop under aged people from watching violent scenes in movies is to eliminate these scenes. In this paper, we proposed a violence detection scheme for movies that is comprised of three steps. First, the entire movie is segmented into shots, and then a representative frame from each shot is selected based on the level of saliency. Next, these selected frames are passed from a light-weight deep learning model, which is fine-tuned using a transfer learning approach to classify violence and non-violence shots in a movie. Finally, all the non-violence scenes are merged in a sequence to generate a violence-free movie that can be watched by children and as well violence paranoid people. The proposed model is evaluated on three violence benchmark datasets, and it is experimentally proved that the proposed scheme provides a fast and accurate detection of violent scenes in movies compared to the state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Rao ◽  
Y Li ◽  
R Ramakrishnan ◽  
A Hassaine ◽  
D Canoy ◽  
...  

Abstract Background/Introduction Predicting incident heart failure has been challenging. Deep learning models when applied to rich electronic health records (EHR) offer some theoretical advantages. However, empirical evidence for their superior performance is limited and they remain commonly uninterpretable, hampering their wider use in medical practice. Purpose We developed a deep learning framework for more accurate and yet interpretable prediction of incident heart failure. Methods We used longitudinally linked EHR from practices across England, involving 100,071 patients, 13% of whom had been diagnosed with incident heart failure during follow-up. We investigated the predictive performance of a novel transformer deep learning model, “Transformer for Heart Failure” (BEHRT-HF), and validated it using both an external held-out dataset and an internal five-fold cross-validation mechanism using area under receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC). Predictor groups included all outpatient and inpatient diagnoses within their temporal context, medications, age, and calendar year for each encounter. By treating diagnoses as anchors, we alternatively removed different modalities (ablation study) to understand the importance of individual modalities to the performance of incident heart failure prediction. Using perturbation-based techniques, we investigated the importance of associations between selected predictors and heart failure to improve model interpretability. Results BEHRT-HF achieved high accuracy with AUROC 0.932 and AUPRC 0.695 for external validation, and AUROC 0.933 (95% CI: 0.928, 0.938) and AUPRC 0.700 (95% CI: 0.682, 0.718) for internal validation. Compared to the state-of-the-art recurrent deep learning model, RETAIN-EX, BEHRT-HF outperformed it by 0.079 and 0.030 in terms of AUPRC and AUROC. Ablation study showed that medications were strong predictors, and calendar year was more important than age. Utilising perturbation, we identified and ranked the intensity of associations between diagnoses and heart failure. For instance, the method showed that established risk factors including myocardial infarction, atrial fibrillation and flutter, and hypertension all strongly associated with the heart failure prediction. Additionally, when population was stratified into different age groups, incident occurrence of a given disease had generally a higher contribution to heart failure prediction in younger ages than when diagnosed later in life. Conclusions Our state-of-the-art deep learning framework outperforms the predictive performance of existing models whilst enabling a data-driven way of exploring the relative contribution of a range of risk factors in the context of other temporal information. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): National Institute for Health Research, Oxford Martin School, Oxford Biomedical Research Centre


2018 ◽  
Author(s):  
Alexey A. Shvets ◽  
Alexander Rakhlin ◽  
Alexandr A. Kalinin ◽  
Vladimir I. Iglovikov

AbstractSemantic segmentation of robotic instruments is an important problem for the robot-assisted surgery. One of the main challenges is to correctly detect an instrument’s position for the tracking and pose estimation in the vicinity of surgical scenes. Accurate pixel-wise instrument segmentation is needed to address this challenge. In this paper we describe our deep learning-based approach for robotic instrument segmentation. Our approach demonstrates an improvement over the state-of-the-art results using several novel deep neural network architectures. It addressed the binary segmentation problem, where every pixel in an image is labeled as an instrument or background from the surgery video feed. In addition, we solve a multi-class segmentation problem, in which we distinguish between different instruments or different parts of an instrument from the background. In this setting, our approach outperforms other methods for automatic instrument segmentation thereby providing state-of-the-art results for these problems. The source code for our solution is made publicly available.


2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


2021 ◽  
Vol 14 (11) ◽  
pp. 1950-1963
Author(s):  
Jie Liu ◽  
Wenqian Dong ◽  
Qingqing Zhou ◽  
Dong Li

Cardinality estimation is a fundamental and critical problem in databases. Recently, many estimators based on deep learning have been proposed to solve this problem and they have achieved promising results. However, these estimators struggle to provide accurate results for complex queries, due to not capturing real inter-column and inter-table correlations. Furthermore, none of these estimators contain the uncertainty information about their estimations. In this paper, we present a join cardinality estimator called Fauce. Fauce learns the correlations across all columns and all tables in the database. It also contains the uncertainty information of each estimation. Among all studied learned estimators, our results are promising: (1) Fauce is a light-weight estimator, it has 10× faster inference speed than the state of the art estimator; (2) Fauce is robust to the complex queries, it provides 1.3×--6.7× smaller estimation errors for complex queries compared with the state of the art estimator; (3) To the best of our knowledge, Fauce is the first estimator that incorporates uncertainty information for cardinality estimation into a deep learning model.


Author(s):  
Yang Liu ◽  
Yachao Yuan ◽  
Jing Liu

Abstract Automatic defect classification is vital to ensure product quality, especially for steel production. In the real world, the amount of collected samples with labels is limited due to high labor costs, and the gathered dataset is usually imbalanced, making accurate steel defect classification very challenging. In this paper, a novel deep learning model for imbalanced multi-label surface defect classification, named ImDeep, is proposed. It can be deployed easily in steel production lines to identify different defect types on the steel's surface. ImDeep incorporates three key techniques, i.e., Imbalanced Sampler, Fussy-FusionNet, and Transfer Learning. It improves the model's classification performance with multi-label and reduces the model's complexity over small datasets with low latency. The performance of different fusion strategies and three key techniques of ImDeep is verified. Simulation results prove that ImDeep accomplishes better performance than the state-of-the-art over the public dataset with varied sizes. Specifically, ImDeep achieves about 97% accuracy of steel surface defect classification over a small imbalanced dataset with a low latency, which improves about 10% compared with that of the state-of-the-art.


Author(s):  
Pratik Kanani ◽  
Mamta Chandraprakash Padole

Cardiovascular diseases are a major cause of death worldwide. Cardiologists detect arrhythmias (i.e., abnormal heart beat) with the help of an ECG graph, which serves as an important tool to recognize and detect any erratic heart activity along with important insights like skipping a beat, a flutter in a wave, and a fast beat. The proposed methodology does ECG arrhythmias classification by CNN, trained on grayscale images of R-R interval of ECG signals. Outputs are strictly in the terms of a label that classify the beat as normal or abnormal with which abnormality. For training purpose, around one lakh ECG signals are plotted for different categories, and out of these signal images, noisy signal images are removed, then deep learning model is trained. An image-based classification is done which makes the ECG arrhythmia system independent of recording device types and sampling frequency. A novel idea is proposed that helps cardiologists worldwide, although a lot of improvements can be done which would foster a “wearable ECG Arrhythmia Detection device” and can be used by a common man.


Author(s):  
Yogita Hande ◽  
Akkalashmi Muddana

Presently, the advances of the internet towards a wide-spread growth and the static nature of traditional networks has limited capacity to cope with organizational business needs. The new network architecture software defined networking (SDN) appeared to address these challenges and provides distinctive features. However, these programmable and centralized approaches of SDN face new security challenges which demand innovative security mechanisms like intrusion detection systems (IDS's). The IDS of SDN are designed currently with a machine learning approach; however, a deep learning approach is also being explored to achieve better efficiency and accuracy. In this article, an overview of the SDN with its security concern and IDS as a security solution is explained. A survey of existing security solutions designed to secure the SDN, and a comparative study of various IDS approaches based on a deep learning model and machine learning methods are discussed in the article. Finally, we describe future directions for SDN security.


Sign in / Sign up

Export Citation Format

Share Document