scholarly journals Lightweight Interacting Patient Treatment Processes

2012 ◽  
Vol 2 (4) ◽  
pp. 1-19 ◽  
Author(s):  
Ronny Mans ◽  
Wil van der Aalst ◽  
Nick Russell ◽  
Piet Bakker ◽  
Arnold Moleman

Processes concerning the diagnosis and treatment of patients cannot be straightjacketed into traditional production-like workflows. They can be best characterized as weakly-connected interacting light-weight workflows where tasks reside at different levels of granularity, and for each individual patient a doctor proceeds in a step-by-step way deciding what next steps be taken. Classical workflow notations fall short in supporting these patient processes as they have been designed to support monolithic processes. Classical notations (WF-nets (work flow nets), BPMN (Business Process Model and Notation), EPCs (Electronic Prescriptions for Controlled Substances), etc.) assume that a workflow process can be modeled by specifying the life-cycle of a single case in isolation. To address these problems, the authors present an extension of the Proclets framework which allows for dividing complex entangled processes into simple autonomous fragments. Additionally, increased emphasis is placed on interaction related aspects such that fragment instances for individual patients can cooperate in any desired way. The authors describe an implementation of the Proclets framework. Proclets have been added to the open-source Workflow Management System YAWL to better support inter-workflow support functionalities.

2012 ◽  
Vol 51 (05) ◽  
pp. 371-382 ◽  
Author(s):  
P. Liebmann ◽  
P. Wiedemann ◽  
J. Meixensberger ◽  
T. Neumuth

SummaryObjective: Workflow guidance of surgical activities is a challenging task. Because of variations in patient properties and applied surgical techniques, surgical processes have a high variability. The objective of this study was the design and implementation of a surgical workflow management system (SWFMS) that can provide a robust guidance for surgical activities. We investigated how many surgical process models are needed to develop a SWFMS that can guide cataract surgeries robustly.Methods: We used 100 cases of cataract surgeries and acquired patient-individual surgical process models (iSPMs) from them. Of these, randomized subsets iSPMs were selected as learning sets to create a generic surgical process model (gSPM). These gSPMs were mapped onto workflow nets as work-flow schemata to define the behavior of the SWFMS. Finally, 10 iSPMs from the disjoint set were simulated to validate the workflow schema for the surgical processes. The measurement was the successful guidance of an iSPM.Results: We demonstrated that a SWFMS with a workflow schema that was generated from a subset of 10 iSPMs is sufficient to guide approximately 65% of all surgical processes in the total set, and that a subset of 50 iSPMs is sufficient to guide approx. 80% of all processes.Conclusion: We designed a SWFMS that is able to guide surgical activities on a detailed level. The study demonstrated that the high inter-patient variability of surgical processes can be considered by our approach.


2021 ◽  
Author(s):  
Leighton M Watson

Aim: The August 2021 COVID-19 outbreak in Auckland has caused the New Zealand government to transition from an elimination strategy to suppression, which relies heavily on high vaccination rates in the population. As restrictions are eased and as COVID-19 leaks through the Auckland boundary, there is a need to understand how different levels of vaccination will impact the initial stages of COVID-19 outbreaks that are seeded around the country. Method: A stochastic branching process model is used to simulate the initial spread of a COVID-19 outbreak for different vaccination rates. Results: High vaccination rates are effective at minimizing the number of infections and hospitalizations. Increasing vaccination rates from 20% (approximate value at the start of the August 2021 outbreak) to 80% (approximate proposed target) of the total population can reduce the median number of infections that occur within the first four weeks of an outbreak from 1011 to 14 (25th and 75th quantiles of 545-1602 and 2-32 for V=20% and V=80%, respectively). As the vaccination rate increases, the number of breakthrough infections (infections in fully vaccinated individuals) and hospitalizations of vaccinated individuals increases. Unvaccinated individuals, however, are 3.3x more likely to be infected with COVID-19 and 25x more likely to be hospitalized. Conclusion: This work demonstrates the importance of vaccination in protecting individuals from COVID-19, preventing high caseloads, and minimizing the number of hospitalizations and hence limiting the pressure on the healthcare system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anni Rajala ◽  
Annika Tidström

Purpose The purpose of this study is to increase understanding about vertical coopetition from the perspective of interrelated conflict episodes on multiple levels. Design/methodology/approach The empirical part is based on a qualitative single case study of a coopetitive buyer-supplier relationship in the manufacturing sector. Findings Conflicts in vertical coopetition evolve from being merely functional and task-related to becoming dysfunctional and relationship-related, as the level of competition increases. The nature of conflict episodes influences the development of vertical coopetition, and therefore, the interrelatedness of conflict episodes is important to acknowledge. Practical implications Although a conflict is considered functional within a company, it may still be dysfunctional as far as the coopetitive relationship with the buyer or seller is concerned. Competition may trigger conflicts related to protecting own technology and knowledge, which may lead to termination of the cooperation, therefore coopetition should be managed in a way that balance sharing and protecting important knowledge to get advantages of coopetition. Originality/value The findings enhance prior research on vertical coopetition by offering new perspectives on causes of conflicts, their management, outcomes and types. The value of taking a multilevel approach lies in the ability to show how conflicts occur and influence other conflicts through the interrelatedness of conflict elements on different levels.


Author(s):  
Francisco A.C. Pinheiro

A workflow is a series of work processes performed under rules that reflect the formal structure of the organization in which they are carried out and the relationships between their various parts. Workflow applications are software applications used to automate part of workflow processes. They run under the control of a workflow management system (WfMS). The WfMS usually comprises an organizational model, describing the process structure, and a process model, describing the process logic. The Workflow Management Coalition (WfMC, 2008) publishes a set of workflow definitions and related material, including a reference model. Databases are commonly used as a WfMS supporting technology. Not only workflow data are maintained in databases but also the rules governing processes can be stored in database schemas. Database functionality can be used both for defining and managing process models as well as for environment notification and process enactment. This article shows how particular database-related technologies can be used to support WfMS.


2012 ◽  
Vol 9 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Alberto Jardón ◽  
Concepción A. Monje ◽  
Carlos Balaguer

In this work, an innovative robotic solution for human care and assistance is presented. Our main objective is to develop a new concept of portable robot able to support the elderly and those people with different levels of disability during the execution of daily tasks, such as washing their face or hands, brushing their teeth, combing their hair, eating, drinking, and bringing objects closer, among others. Our prototype, ASIBOT, is a five degrees of freedom (DOF) self-contained manipulator that includes the control system and electronic equipment on board. The main advantages of the robot are its light weight, about 11 kg for a 1.3 m reach, its autonomy, and its ability to move between different points (docking stations) of the room or from the environment to a wheelchair and vice versa, which facilitates its supportive functions. The functional evaluation of ASIBOT is addressed in this paper. For this purpose the robotic arm is tested in different experiments with disabled people, gathering and discussing the results according to a methodology that allows us to assess users' satisfaction.


Author(s):  
Li Zhao ◽  
Yan Jin

Collaborative engineering design requires multiple people working together to achieve a common goal. Data sharing approach and workflow management approach have been developed to support collaborative design, but the disconnection of these two approaches has led to problems of efficiency and adaptability. In this paper, we propose a work structure based approach for collaborative design. Our goal is to improve process efficiency and adaptability by integrating management processes with engineering details and allowing designers to make certain managerial decisions through peer coordination. For a specific task, a work structure is a network of engineering work items connected by dynamically acquired engineering dependencies. It is used to generate multiple processes from which the one that best fits the current situation is dynamically determined through coordination among team participants. In order to capture engineering dependencies and associate engineering details, an adaptive work process model is developed that explicitly represents engineering work, work structure, and processes. Based on this model, a set of operations and algorithms are developed for intelligent agents to provide coordination support. Experiments have shown that by following this approach, engineering design processes can dynamically adapt to both requirement and resource changes, and the process efficiency can be significantly improved.


2011 ◽  
Vol 50 (01) ◽  
pp. 23-35 ◽  
Author(s):  
V. Mahler ◽  
H. U. Prokosch ◽  
M. Oschem

Summary Objectives: The aim of this study is to objectify user critique rendering it usable for quality assurance. Based on formative and summative evaluation results we strive to promote software improvements; in our case, the physician discharge letter composition process at the Department of Dermatology, University Hospital Erlangen, Germany. Methods: We developed a novel six-step approach to objectify user critique: 1) acquisition of user critique using subjectivist methods, 2) creation of a workflow model, 3) definition of hypothesis and indicators, 4) measuring of indicators, 5) analyzing results, 6) optimization of the system regarding both subjectivist and objectivist evaluation results. In particular, we derived indicators and workflows directly from user critique/narratives. The identified indicators were mapped onto work-flow activities, creating a link between user critique and the evaluated system. Results: Users criticized a new discharge letter system as “too slow” and “too labor-intensive” in comparison with the previously used system. In a stepwise approach we collected subjective user critique, derived a comprehensive process model including deviations and deduced a set of five indicators for objectivist evaluation: processing time, system-related waiting time, number of mouse clicks, number of keyboard inputs, and throughput time. About 3500 measurements have been performed to compare the work-flow-steps of both systems, regarding 20 discharge letters.Although the difference of the mean total processing time between both systems was statistically insignificant (2011.7 s vs. 1971.5 s; p = 0.457), we detected a significant difference in waiting times (101.8 s vs. 37.2 s; p < 0.001) and number of user interactions (77 vs. 69; p < 0.001) in favor of the old system, thus objectifying user critique. Conclusions: Our six-step approach enables objectification of user critique, resulting in objective values for continuous quality assurance. To our knowledge no previous study in medical informatics mapped user critique onto workflow steps. Subjectivist analysis prompted us to use the indicator system-related waiting time for the objectivist study, which was rarely done before. We consider combining subjectivist and objectivist methods as a key point of our approach. Future work will concentrate on automated measurement of indicators.


Sign in / Sign up

Export Citation Format

Share Document