Comparison of Conventional, Powder Mixed, and Ultrasonic Assisted EDM by Phenomenological Reasoning

Author(s):  
R. Rajeswari ◽  
M.S. Shunmugam

Electro-discharge machining (EDM) is widely used in industries for machining complex shapes and difficult-to-machine materials that are conductive. In the present work, performance of conventional die-sinking EDM process is compared with powder mixed and ultrasonic assisted processes in machining of D3 steel. Using different sets of parameters for rough and finish ED machining, material removal rate and surface roughness are obtained experimentally. The influences of the parameters on material removal rate and surface roughness are presented on the basis of phenomenological reasoning. The results are discussed and suitable recommendations for the practitioners are included.

2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


Electro discharge machining is a non-traditional machining process used for machining hard-to-machine materials, such as various grades of titanium alloys, heat-treated alloy steels, composites, tungsten carbides, and so forth. These materials are hard to machine with customary machining procedures like drilling, milling and hence electro-discharge machining is used to machine such materials to get better quality and efficiency. These materials are generally utilized in current industries like die making industries, aeronautics, nuclear industries, and medical fields. This type of machining is thermalbased, and machining takes place due to repetitive electric sparks that generate between workpiece and tool. Both tools and workpieces are inundated in a dielectric liquid, which has two primary functions. In the first place, it behaves like a medium between the work metal and the tool. Second, it is a flushing agent to expel the machined metal from the machined zone. Machining parameters like a pulse on time, current, wire feed the tool and gap voltage affect the output responses like surface roughness and material removal rate. The material removal rate is a significant parameter that determines machining efficiency. Surface roughness is also a vital parameter that decides machining quality. A lot of research has been conducted to determine the optimum parameters for obtaining the best results. In the present work, a comprehensive review of different types of EDM and the effect of various machining parameters on the surface roughness, material removal rate, and other response parameters has been done.


2020 ◽  
Vol 21 ◽  
pp. 616-618 ◽  
Author(s):  
S. Dinesh Kumar ◽  
M. Ravichandran ◽  
S.V. Alagarsamy ◽  
M. Meignanamoorthy ◽  
S. Sakthivelu

2014 ◽  
Vol 625 ◽  
pp. 511-517
Author(s):  
S.K. Elmenshawy ◽  
Mohammad A. Younes ◽  
Hassan El-Hofy

Products such as parts of die sets and cutting tool inserts are normally produced with complex shapes in materials of high hardness and wear resistance such as ceramics. Electro discharge machining (EDM) can be used to manufacture complex shapes in high hardness materials, but the material should be conductive. Being conductive, Aluminum oxide (Al2O3) based ceramics represent a good alternative for manufacturing hard complex shape parts. However, the integrity of the produced surfaces and the material removal rate need to be investigated. A full factorial experimental design was used to investigate the effect of some selected process variables, namely; pulse-on time, pulse-off time, and pulse current on specific EDM performance measures. The considered performance measures are; crater diameter (D), material removal rate (MRR), and average roughness value (Ra). An analysis of variance (ANOVA) test was carried out to evaluate the experimental results. Empirical models have been developed using DESIGN EXPERT V.8 to predict the average crater diameter (D), material removal rate (MMR), and average roughness value (Ra). Machining conditions that should result in optimum process performance measures have also been considered.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 38 ◽  
Author(s):  
Misbah Niamat ◽  
Shoaib Sarfraz ◽  
Wasim Ahmad ◽  
Essam Shehab ◽  
Konstantinos Salonitis

Electro Discharge Machining (EDM) can be an element of a sustainable manufacturing system. In the present study, the sustainability implications of EDM of special-purpose steels are investigated. The machining quality (minimum surface roughness), productivity (material removal rate) improvement and cost (electrode wear rate) minimization are considered. The influence and correlation of the three most important machining parameters including pulse on time, current and pulse off time have been investigated on sustainable production. Empirical models have been established based on response surface methodology for material removal rate, electrode wear rate and surface roughness. The investigation, validation and deeper insights of developed models have been performed using ANOVA, validation experiments and microstructure analysis respectively. Pulse on time and current both appeared as the prominent process parameters having a significant influence on all three measured performance metrics. Multi-objective optimization has been performed in order to achieve sustainability by establishing a compromise between minimum quality, minimum cost and maximum productivity. Sustainability contour plots have been developed to select suitable desirability. The sustainability results indicated that a high level of 75.5% sustainable desirability can be achieved for AISI L3 tool steel. The developed models can be practiced on the shop floor practically to attain a certain desirability appropriate for particular machine limits.


2017 ◽  
Vol 11 (4) ◽  
pp. 3015-3026 ◽  
Author(s):  
M. Y. Ali ◽  
◽  
M. A. Moudood ◽  
M. A. Maleque ◽  
M. Hazza ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2022 ◽  
Author(s):  
Yong Hu ◽  
Dong Shi ◽  
Ye Hu ◽  
Hongwei Zhao ◽  
Xingdong Sun

A new method of ultrasonic chemical mechanical polishing (CMP) combined with ultrasonic lapping is introduced to improve the machining performance of carbide silicon (SiC). To fulfill the method, an ultrasonic assisted machining apparatus is designed and manufactured. Comparative experiments with and without ultrasonic assisted vibration are conducted. According to the experimental results, the material removal rate (MRR) and surface generation are investigated. The results show that both ultrasonic lapping and ultrasonic CMP can decrease the two-body abrasion and reduce the peak-to-valley (PV) value of surface roughness, the effect of ultrasonic in lapping can contribute to the higher MRR and better surface quality for the following CMP. The ultrasonic assisted vibration in CMP can promote the chemical reaction, increase the MRR and improve the surface quality. The combined ultrasonic CMP with ultrasonic lapping achieved the highest MRR of 1.057 μm/h and lowest PV value of 0.474 μm. Therefore this sequent ultrasonic assisted processing method can be used to improve the material removal rate and surface roughness for the single crystal SiC wafer.


2013 ◽  
Vol 315 ◽  
pp. 369-373
Author(s):  
S. Sulaiman ◽  
A.A. Khan ◽  
M.A. Razak ◽  
M.R. Ibrahim ◽  
M.S. Yusof

The purpose of this paper is to study the effect of current on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, circular shape of copper was used as an electrode with surface area of 100mm². The experiments were repeated for three different values of pulse duration (100µs, 200µs and 400µs) with combination of three different values of discharge current (12A, 16A and 24A). It was found that the pulse duration and current give significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents led to an increase in the MRR, EWR and Ra.


Sign in / Sign up

Export Citation Format

Share Document