SGO A New Approach for Energy Efficient Clustering in WSN

2018 ◽  
Vol 7 (3) ◽  
pp. 54-72 ◽  
Author(s):  
Pritee Parwekar

In wireless sensor networks (WSNs), consumption of energy is the major challenging issue. If the data is transmitted directly from the node to the base station, it leads to more transmissions and energy consumed also increases if the communication distance is longer. In such cases, to reduce the longer communication distances and to reduce the number of transmissions, a clustering technique is employed. Another way to reduce the energy consumed is to reduce the transmission from node to CH or from CH to BS. Reducing the transmission distance is a NP-Hard problem. So, optimization techniques can be used effectively to solve such problems. In this article, is the implementation of a social group optimization (SGO) to reduce the transmission distance and to allow the nodes to consume less energy. The performance of SGO is compared with GA and PSO and the results show that SGO outperforms in terms of fitness and energy.

2020 ◽  
pp. 716-734
Author(s):  
Pritee Parwekar

In wireless sensor networks (WSNs), consumption of energy is the major challenging issue. If the data is transmitted directly from the node to the base station, it leads to more transmissions and energy consumed also increases if the communication distance is longer. In such cases, to reduce the longer communication distances and to reduce the number of transmissions, a clustering technique is employed. Another way to reduce the energy consumed is to reduce the transmission from node to CH or from CH to BS. Reducing the transmission distance is a NP-Hard problem. So, optimization techniques can be used effectively to solve such problems. In this article, is the implementation of a social group optimization (SGO) to reduce the transmission distance and to allow the nodes to consume less energy. The performance of SGO is compared with GA and PSO and the results show that SGO outperforms in terms of fitness and energy.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


2013 ◽  
Vol 579-580 ◽  
pp. 732-739
Author(s):  
Zhi Yan Ma ◽  
Guang You Yang ◽  
Jing Jing Zhou ◽  
Xiong Gan

An energy-efficient wireless sensor routing protocol (Energy-efficient clustering hierarchy routing protocol, EECH) for industrial field is proposed based on LEACH protocol according to the energy inefficiency of existing routing protocols and the characteristics of industrial field applications. The EECH protocol takes full advantages of the node clustering and time slot distribution in LEACH and implements the functions such as clustering, multi hop time slot distribution, node sleeping and data gathering. The cluster heads can be evenly distributed in the area with the geography location information of the wireless nodes, so that the optimal data gathering path can be established. Meanwhile, the EECH protocol can reduce the conflict in data receiving/transmitting and the energy consumption of the nodes, and extend the network lifetime through the multi hop time slot distribution and node sleep mechanism. The simulation results have shown that the death time of the first node in EECH protocol is extended double time than that of LEACH protocol. When most of the nodes dies, the amount of received data of the base station node is more than twice as much as the LEACH protocol, which has verified the energy efficiency characteristic of the EECH protocol.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Baranidharan Balakrishnan ◽  
Santhi Balachandran

Lifetime of Wireless Sensor Network (WSN) is an important issue which affects its implementation in various real time applications. The major factor behind the energy consumption in WSN is its data collection mechanism. The direct data transmission from each sensor node to the Base Station (BS) consumes more energy than other alternatives. Also it is unnecessary, due to redundant data transmission because of geographically closer nodes. Clustering is the best data collection architectural model for WSN since it takes care of in-network processing which handles redundant data within the network. The techniques used for the network having uniform node distribution are not suitable for the networks which have nonuniformly distributed nodes. This paper contributes a novel clustering algorithm: Fuzzy Logic Based Energy Efficient Clustering Hierarchy (FLECH) for nonuniform WSN. The clusters in FLECH are created using proper parameters which increases the lifetime of the WSN. Fuzzy logic in FLECH is wisely used to combine important parameters like residual energy, node centrality, and distance to BS for electing best suitable nodes as CH and increases the network lifetime. FLECH performance is verified in different scenarios and the results are compared with LEACH, CHEF, ECPF, EAUCF, and MOFCA. The simulation results clearly indicate the lifetime increase by FLECH over other algorithms and its energy conservation per round of data collection in the network.


Author(s):  
Ali Mahani ◽  
Ebrahim Farahmand ◽  
Saeide Sheikhpour ◽  
Nooshin Taheri-Chatrudi

Wireless sensor networks (WSNs) are beginning to be deployed at an accelerated pace, and they have attracted significant attention in a broad spectrum of applications. WSNs encompass a large number of sensor nodes enabling a base station (BS) to sense and transmit data over the area where WSN is spread. As most sensor nodes have a limited energy capacity and at the same time transmit critical information, enhancing the lifetime and the reliability of WSNs are essential factors in designing these networks. Among many approaches, clustering of sensor nodes has proved to be an effective method of reducing energy consumption and increasing lifetime of WSNs. In this paper, a new energy-efficient clustering protocol is implemented using a two-step Genetic Algorithm (GA). In the first step of GA, cluster heads (CHs) are selected, and in the second step, cluster members are chosen based on their distance to the selected CHs. Compared to other clustering protocols, the lifetime of WSNs in the proposed clustering is improved. This improvement is the consequence of the fact that this clustering considers energy efficient parameters in clustering protocol.


Author(s):  
Asha Rawat, Dr. Mukesh Kalla

Wireless networks data aggregation allows in-network processing, reduces packet transmission and data redundancy, and thus helps extend wireless sensor systems to the full duration of their lives. There have been many ways of dividing the network into clusters, collecting information from nodes and adding it to the base station, to extend wireless sensor network life. Certain cluster algorithms consider the residual energy of the nodes when selecting clusterheads and others regularly rotate the selection head of the cluster. However, we seldom investigate the network density or local distance. In this report we present an energy-efficient clustering algorithm that selects the best cluster heads of the system after dividing the network into clusters. The cluster head selection depends on the distance between the base station nodes and the remaining power of this approach.Each node's residual energy is compared to the node count. Our results show that the solution proposed more efficiently extends the life of the wireless sensor network. The algorithm prolongs the life and effectiveness of the Wireless Sensor Network.


WSN’s involve abundant sensor’s with inadequate power, which will dispatch the monitored information to the Base Station (BS) which needs extra energy. Clustering is a key strategy for enhancing the sensor network lifespan by diminishing the energy consumption. Energy competent clustering practice be supposed to be delineated for heterogeneous WSN. Effectiveness of heterogeneous protocols deteriorates while altering the heterogeneity. In this paper work, Distributed Energy Efficient Clustering (DEEC) was investigated first, at that point Threshold DEEC (TDEEC), Balanced Energy Efficient Network Integrated Super Heterogeneous (BEENISH) and Improved BEENISH (IBEENISH) under more than a few scenarios were examined and then outcomes were compared. In all four cases, Cluster Heads (CH’s) were preferred with respect to the remnant energy of sensor’s. Observations made thoroughly concerning the performance on the bases of network lifespan and packets received by the BS. IBEENISH performs superior than other existing protocols like DEEC, TDEEC and BEENISH.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Sign in / Sign up

Export Citation Format

Share Document