Mitigation Strategies for Foot and Mouth Disease

2011 ◽  
Vol 2 (2) ◽  
pp. 42-76 ◽  
Author(s):  
Sohini Roy Chowdhury ◽  
Caterina Scoglio ◽  
William H. Hsu

Prediction of epidemics such as Foot and Mouth Disease (FMD) is a global necessity in addressing economic, political and ethical issues faced by the affected countries. In the absence of precise and accurate spatial information regarding disease dynamics, learning- based predictive models can be used to mimic latent spatial parameters so as to predict the spread of epidemics in time. This paper analyzes temporal predictions from four such learning-based models, namely: neural network, autoregressive, Bayesian network, and Monte-Carlo simulation models. The prediction qualities of these models have been validated using FMD incidence reports in Turkey. Additionally, the authors perform simulations of mitigation strategies based on the predictive models to curb the impact of the epidemic. This paper also analyzes the cost-effectiveness of these mitigation strategies to conclude that vaccinations and movement ban strategies are more cost-effective than premise culls before the onset of an epidemic outbreak; however, in the event of existing epidemic outbreaks, premise culling is more effective at controlling FMD.

Author(s):  
Sohini Roy Chowdhury ◽  
Caterina Scoglio ◽  
William H. Hsu

Prediction of epidemics such as Foot and Mouth Disease (FMD) is a global necessity in addressing economic, political and ethical issues faced by the affected countries. In the absence of precise and accurate spatial information regarding disease dynamics, learning- based predictive models can be used to mimic latent spatial parameters so as to predict the spread of epidemics in time. This paper analyzes temporal predictions from four such learning-based models, namely: neural network, autoregressive, Bayesian network, and Monte-Carlo simulation models. The prediction qualities of these models have been validated using FMD incidence reports in Turkey. Additionally, the authors perform simulations of mitigation strategies based on the predictive models to curb the impact of the epidemic. This paper also analyzes the cost-effectiveness of these mitigation strategies to conclude that vaccinations and movement ban strategies are more cost-effective than premise culls before the onset of an epidemic outbreak; however, in the event of existing epidemic outbreaks, premise culling is more effective at controlling FMD.


2010 ◽  
Vol 94 (3-4) ◽  
pp. 282-288 ◽  
Author(s):  
Linda D. Highfield ◽  
Michael P. Ward ◽  
Shawn W. Laffan ◽  
Bo Norby ◽  
G. Gale Wagner

2014 ◽  
Vol 95 (5) ◽  
pp. 1104-1116 ◽  
Author(s):  
Amin S. Asfor ◽  
Sasmita Upadhyaya ◽  
Nick J. Knowles ◽  
Donald P. King ◽  
David J. Paton ◽  
...  

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.


2005 ◽  
Vol 20 (4) ◽  
pp. 372-388 ◽  
Author(s):  
Wendy Kenyon ◽  
Alana Gilbert

The paper focuses on two aspects of the 2001 foot and mouth disease (FMD) outbreak in Scotland that have been largely ignored: first, business managers perceptions of the impact of FMD during and immediately after the outbreak; and second, reactions to the outbreak in terms of action taken by businesses and advice sought. A panel survey of non-farm businesses conducted in April, June and September of 2001 is analysed to shed light on these issues. We find that even at the time, the vast majority of businesses did not report any real impact, although businesses in rural areas and in the tourism industry were more likely to feel some impact - either positive or negative. We show that business managers appeared to favour private sources of advice, although some public sources were found to be very useful, and that some actions, such as increased advertising in tourism businesses, could be more effective than others, such as making redundancies. We conclude with a discussion of the implications of the findings for contingency planning in the event of future FMD outbreaks.


BMJ Open ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. e036172
Author(s):  
James M Azam ◽  
Elisha B Are ◽  
Xiaoxi Pang ◽  
Matthew J Ferrari ◽  
Juliet R C Pulliam

IntroductionOutbreaks of vaccine-preventable diseases continue to threaten public health, despite the proven effectiveness of vaccines. Interventions such as vaccination, social distancing and palliative care are usually implemented, either individually or in combination, to control these outbreaks. Mathematical models are often used to assess the impact of these interventions and for supporting outbreak response decision making. The objectives of this systematic review, which covers all human vaccine-preventable diseases, are to determine the relative impact of vaccination compared with other outbreak interventions, and to ascertain the temporal trends in the use of modelling in outbreak response decision making. We will also identify gaps and opportunities for future research through a comparison with the foot-and-mouth disease outbreak response modelling literature, which has good examples of the use of modelling to inform outbreak response intervention decision making.Methods and analysisWe searched on PubMed, Scopus, Web of Science, Google Scholar and some preprint servers from the start of indexing to 15 January 2020. Inclusion: modelling studies, published in English, that use a mechanistic approach to evaluate the impact of an outbreak intervention. Exclusion: reviews, and studies that do not describe or use mechanistic models or do not describe an outbreak. We will extract data from the included studies such as their objectives, model types and composition, and conclusions on the impact of the intervention. We will ascertain the impact of models on outbreak response decision making through visualisation of time trends in the use of the models. We will also present our results in narrative style.Ethics and disseminationThis systematic review will not require any ethics approval since it only involves scientific articles. The review will be disseminated in a peer-reviewed journal and at various conferences fitting its scope.PROSPERO registration numberCRD42020160803.


2014 ◽  
Vol 143 (6) ◽  
pp. 1256-1275 ◽  
Author(s):  
S. E. ROCHE ◽  
M. G. GARNER ◽  
R. L. SANSON ◽  
C. COOK ◽  
C. BIRCH ◽  
...  

SUMMARYSimulation models can offer valuable insights into the effectiveness of different control strategies and act as important decision support tools when comparing and evaluating outbreak scenarios and control strategies. An international modelling study was performed to compare a range of vaccination strategies in the control of foot-and-mouth disease (FMD). Modelling groups from five countries (Australia, New Zealand, USA, UK, The Netherlands) participated in the study. Vaccination is increasingly being recognized as a potentially important tool in the control of FMD, although there is considerable uncertainty as to how and when it should be used. We sought to compare model outputs and assess the effectiveness of different vaccination strategies in the control of FMD. Using a standardized outbreak scenario based on data from an FMD exercise in the UK in 2010, the study showed general agreement between respective models in terms of the effectiveness of vaccination. Under the scenario assumptions, all models demonstrated that vaccination with ‘stamping-out’ of infected premises led to a significant reduction in predicted epidemic size and duration compared to the ‘stamping-out’ strategy alone. For all models there were advantages in vaccinating cattle-only rather than all species, using 3-km vaccination rings immediately around infected premises, and starting vaccination earlier in the control programme. This study has shown that certain vaccination strategies are robust even to substantial differences in model configurations. This result should increase end-user confidence in conclusions drawn from model outputs. These results can be used to support and develop effective policies for FMD control.


2009 ◽  
Vol 40 (3) ◽  
pp. 18 ◽  
Author(s):  
Linda D. Highfield ◽  
Michael P. Ward ◽  
Shawn W. Laffan ◽  
Bo Norby ◽  
Gale Wagner

Sign in / Sign up

Export Citation Format

Share Document