Design Games for In-Situ Design

2013 ◽  
Vol 5 (3) ◽  
pp. 1-22 ◽  
Author(s):  
Erik Kristiansen

The mobile culture has spawned a host of context-based products, like location-based and tag-based applications. This presents a new challenge for the designer. There is a need of design methods that acknowledge the context and allows it to influence the design ideas. This article focuses on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but the author proposes an approach that calls for the designer to conceptualise and perform ideas in-situ, that is on the site, where the game is supposed to be played. The problem was to design a creativity method that incorporated in-situ design work and which generated game concepts for pervasive games. The proposed design method, called sitestorming, is based on a game using Situationistic individual exploration of the site and different types of game cards, followed by a joint evaluation of the generated ideas. A series of evaluations showed that the designers found the method enjoyable to use, that the method motivated idea generation, and that using in-situ design influenced their design ideas.

2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Michael W. Glier ◽  
Joanna Tsenn ◽  
Julie S. Linsey ◽  
Daniel A. McAdams

Bioinspired design, the practice of looking to nature to find inspiration for solutions to engineering problems, is increasingly a desired approach to design. It allows designers to tap a wealth of time-tested solutions to difficult problems in a domain less considered by designers. Only recently have researchers developed organized, systematic methods for bioinspired design. Traditionally, bioinspired design has been conducted without the benefit of any organized method. Designers relied on the informal “directed intuitive approach” of bioinspired design, which simply directs designers to consider how nature might solve a problem. This paper presents an experiment to explore the impact of the directed approach on idea generation. This experiment is foundationally important to bioinspired engineering design method research. The results of this experiment serve as a fundamental baseline and benchmark for the comparison of more systematic, and often more involved, bioinspired design methods. A group of 121 novice designers are given one of two design problems and instructed to either generate solutions using the directed approach or to generate solutions without being prompted in any additional fashion. Based on the findings presented here, the directed approach offers designers no advantage in the average number of nonredundant ideas, quality, novelty, or variety of the solutions produced. In conclusion, systematic and organized methods for bioinspired design should be sought to effectively leverage nature's design knowledge.


Author(s):  
Daniel Henderson ◽  
Kathryn Jablokow ◽  
Shanna Daly ◽  
Seda McKilligan ◽  
Eli Silk

Various interventions (i.e., methods and tools that guide design work) have been developed to support successful idea generation in a design process. Our previous research explored the impacts of three such design interventions: cognitive-style based teaming, problem framing, and design heuristics. In this work, we looked across these interventions to compare their effects on students’ design ideas. In particular, 966 design ideas collected from 152 undergraduate students in engineering and industrial design from two Midwestern universities were analyzed to investigate their quality with and without each design intervention. Statistically significant differences were observed for the teaming and problem framing interventions. This study has implications for design educators in how design interventions might be used to affect students’ design solutions.


Author(s):  
Warren Brown

This paper details further progress made in the PVRC project “Development of Improved Flange Design Method for the ASME VIII, Div.2 Rewrite Project” presented during the panel session on flange design at the 2006 PVP conference in Vancouver. The major areas of flange design improvement indicated by that project are examined and the suggested solutions for implementing the improved methods into the Code are discussed. Further analysis on aspects such as gasket creep and the use of leakage-based design has been conducted. Shortcomings in the proposed ASME flange design method (ASME BFJ) and current CEN flange design methods (EN-1591) are highlighted and methods for resolution of these issues are suggested.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


Author(s):  
Serhad Sarica ◽  
Binyang Song ◽  
Jianxi Luo ◽  
Kristin L. Wood

Abstract There are growing efforts to mine public and common-sense semantic network databases for engineering design ideation stimuli. However, there is still a lack of design ideation aids based on semantic network databases that are specialized in engineering or technology-based knowledge. In this study, we present a new methodology of using the Technology Semantic Network (TechNet) to stimulate idea generation in engineering design. The core of the methodology is to guide the inference of new technical concepts in the white space surrounding a focal design domain according to their semantic distance in the large TechNet, for potential syntheses into new design ideas. We demonstrate the effectiveness in general, and use strategies and ideation outcome implications of the methodology via a case study of flying car design idea generation.


2020 ◽  
Vol 12 (1) ◽  
pp. 58-73
Author(s):  
Sofia Thunberg ◽  
Tom Ziemke

AbstractInteraction between humans and robots will benefit if people have at least a rough mental model of what a robot knows about the world and what it plans to do. But how do we design human-robot interactions to facilitate this? Previous research has shown that one can change people’s mental models of robots by manipulating the robots’ physical appearance. However, this has mostly not been done in a user-centred way, i.e. without a focus on what users need and want. Starting from theories of how humans form and adapt mental models of others, we investigated how the participatory design method, PICTIVE, can be used to generate design ideas about how a humanoid robot could communicate. Five participants went through three phases based on eight scenarios from the state-of-the-art tasks in the RoboCup@Home social robotics competition. The results indicate that participatory design can be a suitable method to generate design concepts for robots’ communication in human-robot interaction.


Author(s):  
Jan Schumann ◽  
Ulrich Harbecke ◽  
Daniel Sahnen ◽  
Thomas Polklas ◽  
Peter Jeschke ◽  
...  

The subject of the presented paper is the validation of a design method for HP and IP steam turbine stages. Common design processes have been operating with simplified design methods in order to quickly obtain feasible stage designs. Therefore, inaccuracies due to assumptions in the underlying methods have to be accepted. The focus of this work is to quantify the inaccuracy of a simplified design method compared to 3D Computational Fluid Dynamics (CFD) simulations. Short computing time is very convenient in preliminary design; therefore, common design methods work with a large degree of simplification. The origin of the presented analysis is a mean line design process, dealing with repeating stage conditions. Two features of the preliminary design are the stage efficiency, based on loss correlations, and the mechanical strength, obtained by using the beam theory. Due to these simplifications, only a few input parameters are necessary to define the primal stage geometry and hence, the optimal design can easily be found. In addition, by using an implemented law to take the radial equilibrium into account, the appropriate twist of the blading can be defined. However, in comparison to the real radial distribution of flow angles, this method implies inaccuracies, especially in regions of secondary flow. In these regions, twisted blades, developed by using the simplified radial equilibrium, will be exposed to a three-dimensional flow, which is not considered in the design process. The analyzed design cases show that discrepancies at the hub and shroud section do exist, but have minor effects. Even the shroud section, with its thinner leading-edge, is not vulnerable to these unanticipated flow angles.


1989 ◽  
Vol 111 (4) ◽  
pp. 837-843 ◽  
Author(s):  
H. Jaber ◽  
R. L. Webb

This paper develops the effectiveness-NTU design method for cooling towers. The definitions for effectiveness and NTU are totally consistent with the fundamental definitions used in heat exchanger design. Sample calculations are presented for counter and crossflow cooling towers. Using the proper definitions, a person competent in heat exchanger design can easily use the same basic method to design a cooling tower of counter, cross, or parallel flow configuration. The problems associated with the curvature of the saturated air enthalpy line are also treated. A “one-increment” design ignores the effect of this curvature. Increased precision can be obtained by dividing the cooling range into two or more increments. The standard effectiveness-NTU method is then used for each of the increments. Calculations are presented to define the error associated with different numbers of increments. This defines the number of increments required to attain a desired degree of precision. The authors also summarize the LMED method introduced by Berman, and show that this is totally consistent with the effectiveness-NTU method. Hence, using proper and consistent terms, heat exchanger designers are shown how to use either the standard LMED or effectiveness-NTU design methods to design cooling towers.


Author(s):  
Danielle Poreh ◽  
Euiyoung Kim ◽  
Varna Vasudevan ◽  
Alice Agogino

Despite the growing utilization of human-centered design, both in academia and industry, there is lack of pedagogical materials that support context-based design method selection. When used properly, design methods are linked to successful outcomes in the design process, but with hundreds of design methods to select from, knowing when and how to use a particular method is challenging. Selecting the appropriate design method requires a deep understanding of the project context. Cultivating a selection methodology that is more contextually aware, equips students with the tools to apply the most appropriate methods to their future academic and industry projects. Using theDesignExchange knowledge platform as a teaching material, we discuss a summer design course at the University of California at Berkeley that encourages students to choose design methods rather than the instructors giving a set list. The findings illustrate that when given the task to select a method, students exhibit contextually-aware method selection mindsets.


Sign in / Sign up

Export Citation Format

Share Document