scholarly journals Numerical stability of solitons waves through splices in quadratic optical media

2020 ◽  
Vol 42 ◽  
pp. e46881
Author(s):  
Camila Fogaça de Oliveira ◽  
Paulo Laerte Natti ◽  
Eliandro Rodrigues Cirilo ◽  
Neyva Maria Lopes Romeiro ◽  
Érica Regina Takano Natti

The propagation of soliton waves is simulated through splices in quadratic optical media, in which fluctuations of dielectric parameters occur. A new numerical scheme was developed to solve the complex system of partial differential equations (PDE) that describes the problem. Our numerical approach to solve the complex problem was based on the mathematical theory of Taylor series of complex functions. In this context, we adapted the Finite Difference Method (FDM) to approximate derivatives of complex functions and resolve the algebraic system, which results from the discretization, implicitly, by means of the relaxation Gauss-Seidel method. The mathematical modeling of local fluctuations of dielectric properties of optical media was performed by Gaussian functions. By simulating soliton wave propagation in optical fibers with Gaussian fluctuations in their dielectric properties, it was observed that the perturbed soliton numerical solution presented higher sensitivity to fluctuations in the dielectric parameter β, a measure of the nonlinearity intensity in the fiber. In order to verify whether the fluctuations of β parameter in the splices of the optical media generate unstable solitons, the propagation of a soliton wave, subject to this perturbation, was simulated for large time intervals. Considering various geometric configurations and intensities of the fluctuations of parameter β, it was found that the perturbed soliton wave stabilizes, i.e., the amplitude of the wave oscillations decreases as the values of propagation distance increases. Therefore, the propagation of perturbed soliton wave presents numerical stability when subjected to local Gaussian fluctuations (perturbations) of the dielectric parameters of the optical media.

2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


2021 ◽  
Author(s):  
Wissal Jilani ◽  
Abdelfatteh Bouzidi ◽  
Albandary Almahri ◽  
Hajer Guermazi ◽  
Ibrahim Yahia

Abstract Various thickness of Rhodamine B (RhB) laser dye was deposited on epoxy polymeric as a new dielectric organic substrate by spin coating method for the first time. This study focused on the newly considered RhB dye on an epoxy substrate for wide-scale applications. The thickness effect on structural, optical, and dielectric properties of the hybrid coating films was performed. The XRD patterns of the films indicated a large hump amorphous design and lack of Bragg peak intensity associated with the RhB laser dye, due to amorphous film concentration. From UV-Visible spectroscopy, the optical absorption edge shifts to the higher wavelengths direction (redshift) with the variation in RhB dye thicknesses. It was found that the energy band gap decreased when the RhB dye film thickness changed. The refractive index is an important parameter influencing the optical component design. Their values vary according to each relationship that extremely useful the films in optical devices. Laser power attenuation sensitivity of pure epoxy polymeric substrate and its coating films shows that under reducing the thicknesses of RhB dye, the laser power intensity effect increases. Several dielectric parameters are extracted from the series and parallel capacitance measurements. The present results offer new material films for luminescent energy solar concentrator applications.


2002 ◽  
Vol 10 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Ye.P. Mamunya ◽  
V.V. Davydenko ◽  
H. Zois ◽  
L. Apekis ◽  
A.A. Snarskii ◽  
...  

The authors have studied the dielectric properties of composite materials based on both thermoplastic and thermoset resins filled with nickel or copper, with various particle sizes and shapes. In addition, two types of particle distribution, random and segregated, were produced for composites filled with nickel. The main objective was to study the effect of the above factors on the dielectric properties of the composites. The concentration dependence of the dielectric parameters (i.e. the real, ∊′, and the imaginary, ∊″, parts of the complex dielectric permittivity and the dielectric loss tangent, tanδ), calculated for all the systems studied, demonstrates a critical behaviour in the percolation threshold region, with maximum values reached at a volume fraction ϕ = ϕc. The dependence of the dielectric parameters on concentration follows power-law behaviour in the ϕ < ϕc region. The critical exponent value for ∊′ is q = 0.75, in agreement with the theoretical one. The dielectric characteristics of the filled composites are more sensitive to the spatial filler distribution. For the segregated PVC-Ni system with an ordered filler distribution, the value of ϕc is much lower than for ER-Ni composites with a random filler distribution. Besides, for the segregated PVC-Ni system, the value of q is not constant, as it depends on the filler concentration. A model for the structure, which explains this behaviour, is proposed.


2018 ◽  
Vol 8 (12) ◽  
pp. 2547 ◽  
Author(s):  
Štefan Višňovský

Understanding magnetooptics in cylindrical structures presents interest in the development of magnetic sensor and nonreciprocal devices compatible with optical fibers. The present work studies wave propagation in dielectric circular cylindrical structures characterized by magnetic permeability and electric permittivity tensors at axial magnetization. The Helmholtz equations deduced from the Maxwell equations in transverse circularly polarized representation provide electric and magnetic fields. With the restriction to terms linear in off-diagonal tensor elements, these can be expressed analytically. The results are applied to magnetooptic (MO) circular cylindrical waveguides with a step refractive index profile. The nonreciprocal propagation is illustrated on waveguides with an yttrium iron garnet (YIG) core and a lower refractive index cladding formed by gallium substituted yttrium iron garnet (GaYIG) at the optical communication wavelength. The propagation distance required for the isolator operation is about one hundred micrometers. The approach may be applied to other structures of cylindrical symmetry in the range from microwave to optical frequencies.


2008 ◽  
Vol 100 (1) ◽  
pp. 88-102
Author(s):  
JIMMY H. WANG ◽  
YOSHITAKA SOMIYA ◽  
RUYAN GUO ◽  
AMAR BHALLA

Author(s):  
Vishal Singh Chandel ◽  
Atiq UR Rahmanm ◽  
J. P. Shukla ◽  
Rajiv Manohar ◽  
Mohd. Shafi Khan

Effect of fungicides' (thiram, captan, carbendazim, bagalol) treatment on dielectric constant and dielectric loss of a vegetable seed, namely the brinjal at given moisture content and bulk density was examined using Hewlett-Packard (HP-4194A) impedance/gain phase analyzer over the frequency range of 0.01 to 10 MHz and temperature range of 30-450C. Julabo (temperature controller, F-25, Germany) was used for keeping the temperature of seeds constant. Study showed that fungicide treatment cast considerable change in dielectric parameters namely the dielectric constant and dielectric loss.


Author(s):  
Guo Shaojun ◽  
Shen Tongsheng ◽  
Zou Chunrong

With the equivalent dielectric parameters of an artificial gradient structure consisting of a kind of dielectric material as inputs of FDTD multi-layer equivalent simulation, there are big nonuniform differences between the S-curve of retrieval methods and the corresponding full structure. In order to decease these differences, here, a boundary restricted genetic algorithm is proposed. In our method, Smith S method is employed to find the rough values of dielectric parameters, and at the same time, the up and low limit cases are introduced to calculate the boundary parameter values for each layer of the artificial structure and form the searching areas for genetic algorithm to get high-precision inversion of S-curve. The FDTD S-curve of the retrieval parameters and full structure of cone gradient and moth eye were performed experimentally, the maximum deviation of inversion S21 curves corresponding to the cone and moth eye with full structure is limited within 0.0028 and 0.0024 in the X-band (8–12[Formula: see text]GHz) range, respectively, which shows us the promising application of our method in dielectric parameter retrieval and may be helpful for electromagnetic field analysis.


2019 ◽  
Vol 9 (10) ◽  
pp. 2084 ◽  
Author(s):  
Pujuan Ma ◽  
Barbora Kacerovská ◽  
Raha Khosravi ◽  
Chunhao Liang ◽  
Jun Zeng ◽  
...  

In this paper, we propose a numerical approach to simulate the degree of coherence (DOC) of a partially coherent beam (PCB) with a Schell-model correlator in any transverse plane during propagation. The approach is applicable for PCBs whose initial intensity distribution and DOC distribution are non-Gaussian functions, even for beams for which it is impossible to obtain an analytical expression for the cross-spectral density (CSD) function. Based on our approach, numerical examples for the distribution of the DOC of two types of PCBs are presented. One type is the partially coherent Hermite–Gaussian beam. The simulation results of the DOC agree well with those calculated from the analytical formula. The other type of PCB is the one for which it is impossible to obtain an analytical expression of CSD. The evolution of the DOC with the propagation distance and in the far field is studied in detail. Our numerical approach may find potential applications in optical encryption and information transfer.


Sign in / Sign up

Export Citation Format

Share Document