Fracture Toughness in Ultra Fine-Grained Magnesium Alloy

Author(s):  
Hidetoshi Somekawa ◽  
Toshiji Mukai
2013 ◽  
Vol 753 ◽  
pp. 465-468
Author(s):  
Masafumi Noda ◽  
Kunio Funami

The development of laminated composite Mg alloy sheets, prepared by solid diffusion and roll bonding, is an effective way of improving the stiffness and surface properties of these materials while retaining their lightness. Laminated composites consisting of a core of Mg alloy between sheets of A5083 alloy as the coating material with Ti foil interlayers were prepared by solid diffusion and roll bonding. The laminated material had a strength and was resistant to cracking during deformation. Compounds that were formed and dispersed at the bonding interface between the Al and Mg alloys subjected to grain refinement improved the fracture toughness and strength of the composites, and it was important that these compounds were formed discontinuously. The fracture toughness of the laminated composite was twice that of the base Mg alloy, and its Young's modulus was 57 GPa.


2006 ◽  
Vol 503-504 ◽  
pp. 155-160 ◽  
Author(s):  
Hidetoshi Somekawa ◽  
Toshiji Mukai

The fracture toughness was investigated using in an extruded AZ31 magnesium alloy with an initial grain size of 1.0 μm. Since the small scale yielding condition was not satisfied with the present thin thickness, the value of plane-strain fracture toughness, KIC = 27.9 MPam1/2, was measured from Stretched Zone analysis. The values of KIC in AZ31 magnesium alloys were dependent on the grain size. The grain refinement was found to be one of the improvement methods for fracture toughness in magnesium alloy.


Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Dillimax 550 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 690 MPa (100 ksi). Plate is delivered in three qualities: basic, tough, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-652. Producer or source: Dillinger Hütte GTS.


Alloy Digest ◽  
2012 ◽  
Vol 61 (3) ◽  

Abstract Dillimax 500 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 500 MPa (72 ksi). Plate is delivered in three qualities: basic, high toughness, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, heat treating, and joining. Filing Code: SA-645. Producer or source: Dillinger Hütte GTS.


2019 ◽  
Vol 8 (4) ◽  
pp. 3475-3486 ◽  
Author(s):  
Abdul Malik ◽  
Wang Yangwei ◽  
Cheng Huanwu ◽  
Muhammad Abubaker Khan ◽  
Faisal Nazeer ◽  
...  

2008 ◽  
Vol 58 (4) ◽  
pp. 311-314 ◽  
Author(s):  
Y.J. Chen ◽  
Q.D. Wang ◽  
H.J. Roven ◽  
M.P. Liu ◽  
M. Karlsen ◽  
...  

1970 ◽  
Vol 3 (1) ◽  
pp. 15-22 ◽  
Author(s):  
SK Nath ◽  
Uttam Kr Das

Fracture toughness (K1C) of medium carbon steel (0.5% C) has been determined by round notched tensile specimen. Two notch diameters (5.6mm and 4.2mm) and three notch angles (α) namely 45°, 60° and 75° have been used to observe the effect of notch diameters and notch angle on fracture toughness of the steel. By heat treatment the microstructure of the steel is also varied and its effect on the fracture toughness is also observed. It has been found that fine grained structure improves fracture toughness. Lower notch diameter and higher notch angle show higher value of K1C. Keywords: Fracture toughness, microstructure, notch, heat treatmentDOI: 10.3329/jname.v3i1.925 Journal of Naval Architecture and Marine Engineering 3(2006) 15-22


2017 ◽  
Vol 23 (3) ◽  
pp. 222 ◽  
Author(s):  
Ondřej Hilšer ◽  
Stanislav Rusz ◽  
Wojciech Maziarz ◽  
Jan Dutkiewicz ◽  
Tomasz Tański ◽  
...  

<p>Equal channel angular pressing (ECAP) method was used for achieving very fine-grained structure and increased mechanical properties of AZ31 magnesium alloy. The experiments were focused on the, in the initial state, hot extruded alloy. ECAP process was realized at the temperature 250°C and following route Bc. It was found that combination of hot extrusion and ECAP leads to producing of material with significantly fine-grained structure and improves mechanical properties. Alloy structure after the fourth pass of ECAP tool with helix matrix 30° shows a fine-grained structure with average grain size of 2 µm to 3 µm and high disorientation between the grains. More experimental results are discussed in this article.</p>


Sign in / Sign up

Export Citation Format

Share Document