Effect of Deep Cryogenic Treatment on the Microstructure of an Aerospace Aluminum Alloy

2012 ◽  
Vol 445 ◽  
pp. 965-970 ◽  
Author(s):  
F. Bouzada ◽  
M. Cabeza ◽  
P. Merino ◽  
S. Trillo
2014 ◽  
Vol 936 ◽  
pp. 1047-1055 ◽  
Author(s):  
Edgar S. Ashiuchi ◽  
Volker F. Steier ◽  
Cosme R.M. Silva ◽  
Tales D. Barbosa ◽  
Tiago F.O. Melo ◽  
...  

The endurance of components made of aluminum and aluminum alloys is often limited by their low yield strength and by their low wear resistance. The aim of this paper is to investigate the effect of different methods that can improve wear resistance of aluminum alloys. As a first approach, a highly wear resistant chromium nitrite layer was deposited by plasma vapor deposition on the surface of the aluminum alloy AA 6101-T4. In the second method, an ultra-deep cryogenic treatment was selected. Both methods have been previously used to improve the wear resistance of other harder substrate materials, like tool steel. To investigate the impact of the two methods on the wear resistance of such alloy, micro abrasive wear tests were carried out and an analysis based on the Archard’s law was considered. The results showed a decrease of the wear rate by 29% and 26% for the coated and for the cryogenically treated specimens, respectively, when compared to the as received material. The work also investigated the performance of three different methods (Allsopp, Double Intercept and Polynomial AT) usually considered to calculate the wear rate of coated samples. The three methods presented similar measures of wear rate for the substrate and for the coating


2012 ◽  
Vol 445 ◽  
pp. 965-970 ◽  
Author(s):  
F. Bouzada ◽  
M. Cabeza ◽  
P. Merino ◽  
S. Trillo

This paper describes how deep cryogenic treatment at 98K produces changes in the microstructure of a heat-treated aluminum alloy. It was observed how the sub-micrometric particles increased near and at the grain boundaries. This slight precipitation did not produce any modification in static mechanical properties. However, the compressive residual stresses of the material were higher after compared to before the treatment. Both these effects can enhance the life of this alloy through cryogenic treatment.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Volker Franco Steier ◽  
Edgar Sobral Ashiuchi ◽  
Lutz Reißig ◽  
José Alexander Araújo

The aim of this work is to evaluate the effect of a deep cryogenic treatment (DCT) on the wear behavior and on the microstructure of an aluminum alloy. In order to compare the level of improvement on the wear resistance provided by the DCT with a more traditional technique, a test matrix which included DCT, CrN coated specimens, and combinations of both modification methods was conducted. The wear behavior was investigated using microabrasive wear tests. The cryogenic treated specimens proved to have similar low wear rates as the specimens coated with CrN. The most distinct improvement was reached with a combination of both techniques. In the case of the DCT, the performed microstructural analysis identified the generation of additional GP-zones as the reason for the improved wear resistance.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 631 ◽  
Author(s):  
Wenlin Gao ◽  
Xiangjie Wang ◽  
Junzhou Chen ◽  
Chunyan Ban ◽  
Jianzhong Cui ◽  
...  

The hardness, toughness, wear resistance, and fatigue behavior of materials can be improved through a deep cryogenic treatment (DCT). During this treatment, low temperatures (−100 °C to −196 °C) are maintained and then increased to room or higher. In this work, an indirect-extrusion plate of 7A99 ultra-high strength aluminum alloy was subjected to a T6 (peak aging) treatment and a T6-DCT treatment. The influence of the T6-DCT treatment on the mechanical properties, grain morphologies, precipitates, and atom–cluster distribution was investigated via tensile testing, electron backscatter diffraction, transmission electron microscopy, and three-dimensional atom probe analysis. The tensile strength (maximum: 705 deep cryogenic treatment), yield strength (maximum: 678 MPa), and elongation (maximum: 14%) of the T6-DCT-treated alloy were higher than those of the T6-treated alloy. Moreover, the T6-DCT treatment resulted in (i) grain size refinement and increased uniformity of the microstructure (homogeneous distribution of η’-MgZn2- and η-phase precipitates), and (ii) reduced segregation degree of Zn, Mg, and Cu atoms in the matrix (fraction of small atom clusters (sizes: 10–20 nm, 20–50 nm) increased, fraction of large clusters (size: >1,000 nm) decreased). Therefore, DCT can refine the precipitates and increase the uniformity of the precipitate distribution, thereby improving the strength and plasticity of the alloy.


2012 ◽  
Vol 724 ◽  
pp. 182-185 ◽  
Author(s):  
Shan Gao ◽  
Zhi Sheng Wu ◽  
Peng Fei Jin ◽  
Jun Jie Wang ◽  
Peng Shuai

5A06 aluminum alloy welding was obtained by using SAlMg-3 as welding wire with MIG (metal inert gas arc welding). The welded joint with deep cryogenic treatment at liquid nitrogen temperature (-155) for 4h, 8h, 10h were analyzed by metallographic and XRD examination. The results have shown that a lot of subgrain appears in the microstructure of the welded joint resulting in the refined grain after cryogenic treatment. The obvious increasing in content of β-phase (Mg2Al3) is distributed and dispersed evenly, contributed to dispersion strengthening of the welded joint. Meanwhile, orientation phenomena is obtained for some grain after deep cryogenic treatment. As a result, the microstructure of the joint can be modified by the deep cryogenic treatment.


2011 ◽  
Vol 314-316 ◽  
pp. 927-931 ◽  
Author(s):  
Shan Gao ◽  
Zhi Sheng Wu ◽  
Peng Fei Jin ◽  
Jun Jie Wang

In this paper, some deep cryogenic treatment experiments are first applied to 5A06 aluminum alloy welded joint at liquid nitrogen temperature (-155°C )for 4h, 8h, 10h respectively. 5A06 alloy welded joints before and after deep cryogenic treatment are observed by X-ray diffraction and scanning electrical microscopy. The experimental results have shown that the deep cryogenic treatment causesβphase of alloy to disperse and makes the grain smaller than that of joint before deep cryogenic treatment. Therefore, the mechanical properties of 5A06 alloy welded joints after deep cryogenic treatment are greatly improved.


2021 ◽  
Vol 548 ◽  
pp. 149257
Author(s):  
Patricia Jovičević-Klug ◽  
Monika Jenko ◽  
Matic Jovičević-Klug ◽  
Barbara Šetina Batič ◽  
Janez Kovač ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document