scholarly journals A CT-Scan Compatible Robotic Device for Needle Placement in Medical Applications

2013 ◽  
Vol 8-9 ◽  
pp. 574-583 ◽  
Author(s):  
Calin Vaida ◽  
Bogdan Gherman ◽  
Doina Pislă ◽  
Nicolae Plitea

Several medical applications require devices capable of placing different substances inside the human body. Due to the nature of the task it is desirable to perform these actions with visual feedback, whereas the most viable solution, especially for deep target points, is computer tomography (CT). The paper presents an innovative device, which can be fitted inside the CT gantry, and has decoupled motions to ensure maximum accuracy during the needle placement. It will be shown that for needle placement tasks 5 degrees of freedom (DOF) are sufficient to achieve the task. The geometric and kinematic model of the robot will be presented. The workspace and precision mapping are computed. Some simulation results will show the robot capabilities as well as its placement in the CT scan environment.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
A. S. Niyetkaliyev ◽  
E. Sariyildiz ◽  
G. Alici

Abstract The robotic shoulder rehabilitation exoskeletons that do not take into consideration all shoulder degrees-of-freedom (DOFs) lead to undesirable interaction forces and cause discomfort to the patient due to the joint axes misalignments between the exoskeleton and shoulder joints. In order to contribute to the solution of this human–robot compatibility issue, we present the kinematic modeling and analysis of a novel bio-inspired 5-DOFs hybrid human–robot mechanism (HRM). The human limbs are regarded as the inner passive restrained links in the proposed hybrid constrained anthropomorphic mechanism. The proposed hybrid mechanism combines serial and parallel manipulators with rigid and cable links enabling a match between human and exoskeleton joint axes. It is designed to cover the whole range of motion of the human shoulder with the workspace free of singularities. The numerical and simulation results from the computer-aided drawing model of the mechanism are presented to demonstrate the validity of the kinematic model, and the kinematic and singularity merits of the proposed mechanism. A three-dimensional printed prototype of the hybrid mechanism was fabricated to further validate the kinematic model and its overall advantages.


Author(s):  
Benjamin Maurin ◽  
Bernard Bayle ◽  
Jacques Gangloff ◽  
Michel de Mathelin ◽  
Olivier Piccin

In this paper, a new five-degree-of-freedom parallel manipulator is described and modeled. This structure has been specially designed for medical applications that require in the same time mobility, compactness and accuracy around a functional point. The purpose of this robotic device is to help practitioners to perform accurate needle insertions while preserving them from harmful intra-operative X-ray imaging devices. The system is built from revolute joints, among which only five joints are actuated to convey the required five degrees of freedom to its moving platform. A numerical simulation of the workspace and a physical prototype are presented.


2018 ◽  
Vol 224 ◽  
pp. 02034 ◽  
Author(s):  
Aleksey Kabanov ◽  
Aleksey Balabanov

This paper considers the anthropomorphic manipulator kinematics modeling problem. The considered anthropomorphic robot SAR-400 manipulator with five-fingered gripper has twelve degrees of freedom. In the paper the robot SAR-400 arm kinematic model and the simulation results are presented.


Author(s):  
E. J. Markvicka ◽  
R. L. McCormick ◽  
T. P. Frederick ◽  
J. R. Bartels ◽  
S. M. Farritor ◽  
...  

Colorectal surgery is an area of active research within general surgery. However, over 80% of these procedures currently require an open surgery based on the size and location of the tumor. The current state-of-the-art surgical instruments are unintuitive, restricted by the incision site, and often require timely repositioning tasks during complex surgical procedures. A multi-quadrant miniature in vivo surgical robot has been developed to mitigate these limitations as well as the invasiveness of colorectal procedures. By reducing invasiveness, the patient benefits from improved cosmetics, decreased postoperative pain, faster recovery time, and reduced financial burden. A paradigm shift in invasiveness is often inversely proportional to surgeon benefits. Yet, through the use of a robotic device, the surgeon benefits from improved ergonomics, intuitive control, and fewer required repositioning tasks. This paper presents a two armed robotic device that can be controlled from a remote surgical interface. Each arm has six internally actuated degrees of freedom, decoupling the system from the incision site. Each arm is also equipped with a specialized interchangeable end effector. For the surgical procedure, visual feedback is provided through the use of a standard laparoscope with incorporated light source. The robotic device is introduced into the abdominal cavity through a hand-assisted laparoscopic surgery (HALS) port that is placed within the navel. The device is then grossly positioned to the site of interest within the abdominal cavity through the use of a protruding rod that is rigidly attached to each arm. The surgeon can then begin to manipulate tissue through the use of the surgical interface that is remotely located within the operating room. This interface is comprised of a monitor to provide visual feedback, foot pedals to control the operational state of the device, and two haptic devices to control the end point location of each arm and state of the end effectors.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


2014 ◽  
Vol 687-691 ◽  
pp. 610-615 ◽  
Author(s):  
Hui Liu ◽  
Li Wen Guan

High-dynamic flight simulator (HDFS), using a centrifuge as its motion base, is a machine utilized for simulating the acceleration environment associated with modern advanced tactical aircrafts. This paper models the HDFS as a robotic system with three rotational degrees of freedom. The forward and inverse dynamic formulations are carried out by the recursive Newton-Euler approach. The driving torques acting on the joints are determined on the basis of the inverse dynamic formulation. The formulation has been implemented in two numerical simulation examples, which are used for calculating the maximum torques of actuators and simulating the time-histories of kinematic and dynamic parameters of pure trapezoid Gz-load command profiles, respectively. The simulation results can be applied to the design of the control system. The dynamic modeling approach presented in this paper can also be generalized to some similar devices.


Author(s):  
Michael John Chua ◽  
Yen-Chen Liu

Abstract This paper presents cooperation and null-space control for networked mobile manipulators with high degrees of freedom (DOFs). First, kinematic model and Euler-Lagrange dynamic model of the mobile manipulator, which has an articulated robot arm mounted on a mobile base with omni-directional wheels, have been presented. Then, the dynamic decoupling has been considered so that the task-space and the null-space can be controlled separately to accomplish different missions. The motion of the end-effector is controlled in the task-space, and the force control is implemented to make sure the cooperation of the mobile manipulators, as well as the transportation tasks. Also, the null-space control for the manipulator has been combined into the decoupling control. For the mobile base, it is controlled in the null-space to track the velocity of the end-effector, avoid other agents, avoid the obstacles, and move in a defined range based on the length of the manipulator without affecting the main task. Numerical simulations have been addressed to demonstrate the proposed methods.


Author(s):  
Sunil Kumar Agrawal ◽  
Siyan Li ◽  
Glen Desmier

Abstract The human spine is a sophisticated mechanism consisting of 24 vertebrae which are arranged in a series-chain between the pelvis and the skull. By careful articulation of these vertebrae, a human being achieves fine motion of the skull. The spine can be modeled as a series-chain with 24 rigid links, the vertebrae, where each vertebra has three degrees-of-freedom relative to an adjacent vertebra. From the studies in the literature, the vertebral geometry and the range of motion between adjacent vertebrae are well-known. The objectives of this paper are to present a kinematic model of the spine using the available data in the literature and an algorithm to compute the inter vertebral joint angles given the position and orientation of the skull. This algorithm is based on the observation that the backbone can be described analytically by a space curve which is used to find the joint solutions..


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877390 ◽  
Author(s):  
Yue Zhu ◽  
Jiangming Kan ◽  
Wenbin Li ◽  
Feng Kang

As to the complicated terrain in forest, forestry chassis with an articulated body with three degrees of freedom and installed luffing wheel-legs (FC-3DOF&LW) is a novel chassis that can surmount obstacles. In addition, the rear frame of FC-3DOF&LW is regarded as the platform to carry equipment. Small inclination angle for rear frame contributes to stability and ride comfort. This article describes the strategy of traversing obstacles and simulation for FC-3DOF&LW that drives in forest terrain. First, key structures of FC-3DOF&LW are briefly introduced, which include articulated structure with three degrees of freedom and luffing wheel-leg. Based on the sketch of luffing wheel-leg, the movement range of luffing wheel-leg is obtained by hydraulic cylinder operation. Second, the strategy of crossing obstacles that are simplified three models of terrain is presented, and the simulation for surmounting obstacles is constructed in multibody dynamics software. The simulation results demonstrate that the inclination angle of rear frame is 18° when slope is 30°. A maximum 12° decrease of inclination angle for rear frame can be acquired when luffing wheel-legs are applied. For traversing obstacles with both sides, the maximum inclination angle of rear frame is about 1.2° and is only 3° for traversing obstacles with single side.


Author(s):  
Mohammed Ahmed ◽  
M. S. Huq ◽  
B. S. K. K. Ibrahim

FES induced movements from indication is promising due to encouraging results being obtained by scholars. The kinematic model usually constitute the initial phase towards achieving the segmental dynamics of any rigid body system. It can be used to ascertain that the model is capable of achieving the desired goal. The dynamic model builds on the kinematic model and is usually mathematically cumbersome depending on the number of degrees-of-freedom. This paper presents a kinematic model applicable for human sit-to-stand movement scenario that will be used to obtain the dynamic model the FES induced movement in a later study. The study shows that the 6 DOF conceptualized sit-to-stand movement can be achieved conveniently using 4 DOF. The 4 DOF has an additional joint compared to similar earlier works which makes more it accurate and flexible. It is more accurate in the sense that it accommodates additional joint i.e. the neck joint whose dynamics could be captured. And more flexible in the sense that if future research uncover more contributions by the segments it can be easily incorporated including that of other segments e.g. the trunk, neck and upper limbs.


Sign in / Sign up

Export Citation Format

Share Document