Research on Wear Behavior of Tools while Infeed Cutting Austempered Ductile Iron (ADI) with Ceramic Tools

2007 ◽  
Vol 10-12 ◽  
pp. 605-609
Author(s):  
Xu Hong Guo ◽  
G. Liu ◽  
G.S. Su

Cutting tests had been done on the Austempered Ductile Iron (ADI) with ceramic cutting tools. The wear shape of the cutting tool’s surface was observed by the Scanning Electron Microscope (SEM). The micro-wear area of the tools was analyzed with energy spectrum. Study on wear shape and wear mechanisms were done when infeed cutting ADI. The result shows that: the cutting speed is an important factor to the tool wear when infeed cutting ADI with CC650 tool, and with the increase of the cutting speed, the wear value of cutting tool increases obviously. The flank of cutting tool (CC650) has wear land of definite width during cutting, and shows obvious abrasive wear. The crate wear shape of rake face is almost joined to major cutting edge, it is different from the typical crate shape of rake face. Elements Fe, Si and Mg in ADI material diffuses to the surface of cutting tools (CC650) after cutting, the diffusion exacerbates the wear of cutting tools, and the diffusion degree of rake face is larger than that of flank, abrasive wear, adhesive wear and diffusive wear is chief reasons for tools wear.

2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


Author(s):  
T. R. Uma ◽  
J. B. Simha ◽  
K. Narasimha Murthy

Laboratory abrasive wear tests have been reported on permanent moulded toughened austempered ductile iron. The influence of austempering temperature on the abrasive wear behavior have been studied and discussed. The results indicate that with increase in austempering temperature from 300°C to 350°C, the abrasive wear resistance increased, and as the austempering temperature increased to 400°C, there was reduction in the abrasive wear resistance. These results have been interpreted based on the structural features and graphite morphology.


2016 ◽  
Vol 1136 ◽  
pp. 561-566
Author(s):  
Tatsuya Sugihara ◽  
Shota Takemura ◽  
Toshiyuki Enomoto

Nickel-based superalloys such as Inconel 718 are known as one of the most difficult-to-cut materials due to their mechanical and chemical properties and the tool life is extremely short. Recently, Cubic-Boron-Nitride (CBN) has received a considerable attention as a material for cutting tools and has been considered to be a major candidate for high performance cutting of Inconel 718. However, the detailed wear behavior of CBN tools in cutting of Inconel 718 is not sufficiently understood yet, and the performances of CBN tools are still insufficient in practical use. To overcome this problem, we first conducted orthogonal cutting experiments on Inconel 718 at low (20 m/min) and high (100 m/min) cutting speeds employing CBN cutting tools to clarify the detailed wear mechanisms. Moreover, relationship between surface microstructures of the cutting tool and wear resistance was investigated. As a result, it was found that a rake face with micro grooves significantly suppressed the crater wear at low cutting speed, although polished surface rake face reduced the initial crater wear by approximately 40 % compared to the non-polished tool in high speed cutting of Inconel 718.


Wear ◽  
2019 ◽  
Vol 440-441 ◽  
pp. 203065 ◽  
Author(s):  
Amanda Souza Oliveira Pimentel ◽  
Wilson Luiz Guesser ◽  
William José Rodrigues Custódio da Silva ◽  
Pedro Dolabella Portella ◽  
Mathias Woydt ◽  
...  

Author(s):  
K. Aslantas ◽  
İ. Ucun ◽  
K. Gök

The study deals with the machinability properties of austempered ductile iron using cubic boron nitride cutting tools. To emphasize the role of the austempering process, ductile iron specimens were first austenitized in salt bath at 900°C for 60min, after which they were quenched in a salt bath at 250°C and 325°C for 60min. Machining tests were carried out at various cutting speeds under the constant depth of cut and the feed rate. Tool performance was evaluated based on the workpiece surface roughness and flank wear. The influence of the austempering temperature and cutting speed on the chip form was also studied. The results point out that the lower austempering temperature results in the increase in the cutting forces, while better surface roughness is attained.


2013 ◽  
Vol 371 ◽  
pp. 18-22
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Vlad Darie

The problems related to the wear of the cutting tools wear and the tools life at the machining of the stainless steels are very important due to the chemical and mechanical characteristics of these steels [1]. Over time the research have studied the causes which produce the cutting tool wear and the methods to improve the cutting tools durability, either by creating new types of materials for tools, either by the choice of tools geometric parameters and cutting regime [2, 3]. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels, in terms of the global indicator of the minimum machining cost.


2018 ◽  
Vol 150 ◽  
pp. 04009 ◽  
Author(s):  
Hadzley Abu Bakar ◽  
Naim Fahmi ◽  
Faiz Mokhtar ◽  
Norfauzi Tamin ◽  
Umar Azlan ◽  
...  

This study focuses on the fabrication of alumina based cutting tool for machining application. Specific weight of alumina powders were pressed in a mold using hydraulic press at 8 tons before compressed through Cold Isostatic Press (CIP) at 30000 psi. Green body then was dried and sintered at 1700 °C at 4 hours sintering time to form solid cutting tools. These cutting tools were then tested in turning operation to machine AISI 1045 with different cutting speeds. The results shows that CIP pressed alumina cutting tool obtained the hardness of 83.2 HRA which is considered adequate to machine AISI 1045 steel. The shrinkage of alumina powders recorded about 7% form green compact to sintered body. In terms of flank wear, the alumina cutting tool demonstrated decreased wear rate as the cutting speed increased from 150 m/min to 225 m/min. Wear area focused at the edge of cutting tool due to small nose radius with the minimum wear rate recorded at 0.0025 mm/s for 225 m/min cutting speed. The newly fabricated cutting tools can be improved if finer or secondary reinforced particles were used.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 556 ◽  
Author(s):  
D. Martinez Krahmer ◽  
S. Hameed ◽  
A. J. Sánchez Egea ◽  
D. Pérez ◽  
J. Canales ◽  
...  

Free-cutting steels are developed to produce large quantities of parts with low mechanical behavior, mainly for automotive sector. These alloys contain phosphorous, lead, sulfur, and manganese that help to improve the machinability and surface roughness. However, due to the toxicity of lead, steel mills in recent years have been focusing on non-toxic steels to produce minimum environmental pollution and better machinability. The present work investigates the tool wear during dry and wet turning of free-cutting steels (SAE 1212, SAE 12L14, and SAE 1215) by using uncoated hard metal inserts at three cutting speeds. Additionally, a EDS analysis was performed to determine the presence of Mn and S elements at the rake face of the cutting tool that can induce a higher adhesion of manganese sulfide (MnS). The results show that the SAE 12L14 steel has the best performance in terms of tool life at different cutting speeds. This difference is maximum at the lowest cutting speed, which gradually decreases with the increase of the cutting speed. The wear behavior is evaluated in the three steel alloys at each cutting speed and, consequently, the tool wear exhibits a slightly better performance in the dry machining condition for higher cutting speeds (180 and 240 m/min), independent of the steel alloy. Finally, EDS analysis confirms the presence of Mn and S elements at the rake face of the inserts machined in dry condition. Hence, MnS is expected to interpose between the machined surface and cutting tool surface to behave similar to tribofilm by reducing the wear on the cutting edge.


2014 ◽  
Vol 54 (12) ◽  
pp. 2860-2867 ◽  
Author(s):  
Diego Alejandro Colombo ◽  
María Dolores Echeverría ◽  
Sebastián Laino ◽  
Ricardo Cesar Dommarco ◽  
Juan Miguel Massone

1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


Sign in / Sign up

Export Citation Format

Share Document