Experimental Investigation of Oil Film Thickness for Hydrodynamic Journal Bearings

2011 ◽  
Vol 110-116 ◽  
pp. 2377-2382
Author(s):  
Ravindra R. Navthar ◽  
N.V. Halegowda

Journal bearings are widely applied in different rotating machineries. These bearings allow for transmission of large loads at mean speed of rotation. These bearings are susceptible to large amplitude lateral vibration due to self-exited instability which is known as oil whirl or synchronous whirl. This oil whirl depends on many parameters such as oil film thickness, viscosity of lubricant, load on bearing, inertia of fluid etc. out of which oil film thickness plays an important role in operation of Journal bearings. As oil film thickness decreases metal to metal contact occurs this further can damage the journal bearing. So during the operation minimum oil film thickness should be maintained which can avoid the metal to metal contact and further increases the life of bearing. This paper presents a theoretical calculation of oil film thickness and experimental verification of same on journal bearing test rig. Different journal speeds and loads are considered for the analysis.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Guohui Xu ◽  
Jian Zhou ◽  
Haipeng Geng ◽  
Mingjian Lu ◽  
Lihua Yang ◽  
...  

Journal misalignment usually exists in journal bearings that affect nearly all the bearings static and dynamic characteristics including minimum oil film thickness, maximum oil film pressure, maximum oil film temperature, oil film stiffness, and damping. The main point in this study is to provide a comprehensive analysis on the oil film pressure, oil film temperature, oil film thickness, load-carrying capacity, oil film stiffness, and damping of journal bearing with different misalignment ratios and appropriately considering the turbulent and thermo effects based on solving the generalized Reynolds equation and energy equation. The results indicate that the oil thermo effects have a significant effect on the lubrication of misaligned journal bearings under large eccentricity ratio. The turbulent will obviously affect the lubrication of misaligned journal bearings when the eccentricity or misalignment ratio is large. In the present design of the journal bearing, the load and speed become higher and higher, and the eccentricity and misalignment ratio are usually large in the operating conditions. Therefore, it is necessary to take the effects of journal misalignment, turbulent, and thermal effect into account in the design and analysis of journal bearings.


1997 ◽  
Vol 30 (11) ◽  
pp. 789-793 ◽  
Author(s):  
G.D. Jiang ◽  
H. Hu ◽  
W. Xu ◽  
Z.W. Jin ◽  
Y.B. Xie

1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


1995 ◽  
Vol 117 (3) ◽  
pp. 589-592 ◽  
Author(s):  
A. H. Elkholy ◽  
A. Elshakweer

This study presents a comprehensive technique, which could be applied to almost any rotating equipment to identify and diagnose journal bearing problems that relate to metal-to-metal bearing surface contact. Orbital measurements that describe bearing parameters in different modes of operation were experimentally obtained and analyzed. Such parameters may include: attitude angle, minimum oil film thickness, and the possibility of metal-to-metal rubbing occurrence. The general outline of the presented experimental technique was substantiated using the Raimondi–Boyd well-documented design charts and good correlation between experimental and analytical results was obtained.


Author(s):  
S. Chatterton ◽  
P. Pennacchi ◽  
A. Vania ◽  
E. Tanzi ◽  
R. Ricci

Tilting-pad journal bearings are installed with increased frequency owing to their dynamic stability characteristics in several rotating machine applications, typically in high rotating speed cases. This usually happens for new installations in highspeed compressors or during revamping operations of steam and gas turbines for power generation. The selection from a catalogue, or the design of a new bearing, requires the knowledge of the bearing characteristics such as babbitt metal temperatures, fluid-film thickness, load capacity, stiffness and damping coefficients. Temperature and fluid-film thickness are essential for the safety of the bearing. Babbitt metal is subject to creep at high temperatures, as it happens at high speed operations. On the contrary, at low speed or with high loads, oil-film thickness could be too low, resulting in metal to metal contact. Oil-film dynamic coefficients are largely responsible of the dynamic behaviour and of the stability of the rotor-tilting-pad-bearing system. Therefore, the theoretical evaluation and/or the experimental estimation of these coefficients are mandatory in the design phase. The theoretical evaluation of these coefficients for tilting pad journal bearings is difficult due to their complex geometry, boundary and thermal conditions and turbulent flow, whereas an experimental characterization requires a suitable test rig. The paper describes the test rig designed to this purpose and its unusual configuration with respect to other test rigs available in literature. Some preliminary tests performed for the bearing characterization are also shown.


1949 ◽  
Vol 161 (1) ◽  
pp. 73-79 ◽  
Author(s):  
A. Cameron

In this paper the relation of surface roughness of bearing surfaces to allowable film thickness is studied quantitatively with a simple Michell pad apparatus. The pads used were faced with white metal and ran against mild steel collars. The lubricants studied were water, soap solution, paraffin, and light oil. There was little difference in the frictional behaviour of any of the lubricants, except that the aqueous lubricants would not run with very finely finished steel surfaces. The onset of metal to metal contact was detected by an increase in the frictional drag, and also by the change in electrical conductivity between the pad and collar—an extremely sensitive method. The paper shows that there is, at any rate for this system, a quantitative relation between the total surface roughness of the rubbing surfaces and the calculated oil film thickness both at the initial metal to metal contact and seizure. Initial contact occurs when the outlet film thickness, calculated from normal hydrodynamic theory, falls to three times the maximum surface roughness and seizure occurs when it is double the average roughness.


2013 ◽  
Vol 420 ◽  
pp. 47-50
Author(s):  
Ying Yang ◽  
Jing Hua Dai

Under high and super-high speed, oil film of the journal bearing is easy to crack and then becomes cavitation. The existence of cavitation has an important effect on the work characteristics of the shaft. On the journal bearing experiment rig the cavitation characteristics of the three-groove journal beaing were studied. The influences of the shaft rotating speed and supply pressure on cavitation shape were investigated. The results show that rotating speed and supply pressure have a clear effect on the cavitation shape, and the number of cavitation strip in the rupture zone decreases when the supply pressure increases.


2021 ◽  
Vol 37 ◽  
pp. 282-290
Author(s):  
Junchao Zhu ◽  
Haiyu Qian ◽  
Huabing Wen ◽  
Liangyan Zheng ◽  
Hanhua Zhu

ABSTRACT This paper investigates journal bearings, and builds a lubrication model taking into account misalignment, the lubricant couple stress effect and shear thinning. In order to explore the sensitivity of couple stress fluid lubrication performance to oil film thickness, we introduce the critical oil film thickness coefficient. The results show that the sensitivity increases with the increase of the couple stress coefficient, and it is highest in the area of minimum oil film thickness. Compared with a parallel journal, increases in the misalignment angle strengthen the effect of couple stress. Shear thinning also plays an important role in bearing lubrication performance. For a low oil inlet temperature, the effect of shear thinning increases with the increase of the couple stress parameter. For a high oil inlet temperature, the influence is negligible. An increase in the misalignment angle will not further enhance the effect of shear thinning.


Tribologia ◽  
2021 ◽  
Vol 295 (1) ◽  
pp. 39-51
Author(s):  
Stanisław Strzelecki

The 8-lobe journal bearings have found application in the bearing systems of spindles of grinding machines. The design of bearings and the large number of lobes and oil grooves assures good cooling conditions of bearing. These bearings can be manufactured as the bearings with cylindrical, non-continuous operating surfaces separated by six lubricating grooves, bearings with the pericycloidal shape of the bearing bore, and as offset journal bearing. This paper presents the results of the computation of static characteristics of an offset 8-lobe journal bearing operating under the conditions of an aligned axis of journal and bush, adiabatic oil film, and at the static equilibrium position of journal. Different values of bearing length to diameter ratio, relative clearance, and lobe relative clearance were assumed. Reynolds' energy and viscosity equations were solved by means of an iterative procedure. Adiabatic oil film, laminar flow in the bearing gap, and aligned orientation of journal in the bearing were considered.


Sign in / Sign up

Export Citation Format

Share Document