Numericl Analysis Supersonic Cavity Unsteady Flow

2011 ◽  
Vol 110-116 ◽  
pp. 783-789
Author(s):  
Ou Zi Liu ◽  
Jin Sheng Cai

The computational analysis was performed of self-sustained oscillatory flow over the open cavity driven by a shear layer at flight Mach 5.0 condition with the solution of the Reynolds-averaged Navier-Stokes equations with a two-equation turbulence model. The self-sustained oscillation cycle of the open ramp cavity was got by simulation. It is found that the self-sustained oscillation feature of the cavity was complex flow. The shear layer rolls up and forms a vortex that grows in strength as the fluid enters the cavity. The amplitude of the pressure oscillation on the aft wall is much higher than that at the other wall due to the mass entrainment and ejection mechanism along the aft wall. This periodic mass addition and expulsion could be critical to the fuel and air mixing and flame-holding in the scramjet engine applications.

1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


2020 ◽  
Vol 8 (6) ◽  
pp. 419 ◽  
Author(s):  
Yun-Ta Wu ◽  
Shih-Chun Hsiao

In this article, the interaction of solitary waves and a submerged slotted barrier is investigated in which the slotted barrier consists of three impermeable elements and its porosity can be determined by the distance between the two neighboring elements. A new experiment is conducted to measure free surface elevation, velocity, and turbulent kinetic energy. Numerical simulation is performed using a two-dimensional model based on the Reynolds-Averaged Navier-Stokes equations and the non-linear k-ɛ turbulence model. A detailed flow pattern is illustrated by a flow visualization technique. A laboratory observation indicates that flow separations occur at each element of the slotted barrier and the vortex shedding process is then triggered due to the complicated interaction of those induced vortices that further create a complex flow pattern. During the vortex shedding process, seeding particles that are initially accumulated near the seafloor are suspended by an upward jet formed by vortices interacting. Model-data comparisons are carried out to examine the accuracy of the model. Overall model-data comparisons are in satisfactory agreement, but modeled results sometimes fail to predict the positions of the induced vortices. Since the measured data is unique in terms of velocity and turbulence, the dataset can be used for further improvement of numerical modeling.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 580 ◽  
Author(s):  
Zahra Abdelmalek ◽  
Mohammad Yaghoub Abdollahzadeh Jamalabadi

Micromixers are significant segments inside miniaturized scale biomedical frameworks. Numerical investigation of the effects of galloping cylinder characteristics inside a microchannel Newtonian, incompressible fluid in nonstationary condition is performed. Governing equations of the system include the continuity equation, and Navier–Stokes equations are solved within a moving mesh domain. The symmetry of laminar entering the channel is broken by the self-sustained motion of the cylinder. A parameter study on the amplitude and frequency of passive moving cylinder on the mixing of tiny particles in the fluid is performed. The results show a significant increase to the index of mixing uses of the galloping body in biomedical frameworks in the course of micro-electromechanical systems (MEMS) devices.


Author(s):  
Hadi Karrabi ◽  
Mohsen Rezasoltani

An investigation to understand the impact of twisted, leaned and bowed blades on the performance of axial turbine was undertaken. A CFD code, which solves the Reynolds-averaged Navier–Stokes equations, was used to compute the complex flow field of axial turbine. The code was validated against existing Hannover turbine experimental data. Numerical data showed good agreement with measured data. Finally, the effect of geometry changes, focusing on blade lean, twist and bow, on the Avon turbine blade performance, was analyzed. Results show that twisted blade affects performance significantly. Leaned and bowed blade has minor effect on performance.


2021 ◽  
Vol 929 ◽  
Author(s):  
Ravi Sudam Jadhav ◽  
Abhimanyu Gavasane ◽  
Amit Agrawal

The main goal of the present study is to thoroughly test the recently derived OBurnett equations for the normal shock wave flow problem for a wide range of Mach number ( $3 \leq Ma \leq 9$ ). A dilute gas system composed of hard-sphere molecules is considered and the numerical results of the OBurnett equations are validated against in-house results from the direct simulation Monte Carlo method. The primary focus is to study the orbital structures in the phase space (velocity–temperature plane) and the variation of hydrodynamic fields across the shock. From the orbital structures, we observe that the heteroclinic trajectory exists for the OBurnett equations for all the Mach numbers considered, unlike the conventional Burnett equations. The thermodynamic consistency of the equations is also established by showing positive entropy generation across the shock. Further, the equations give smooth shock structures at all Mach numbers and significantly improve upon the results of the Navier–Stokes equations. With no tweaking of the equations in any way, the present work makes two important contributions by putting forward an improved theory of shock waves and establishing the validity of the OBurnett equations for solving complex flow problems.


1992 ◽  
Vol 236 ◽  
pp. 445-460 ◽  
Author(s):  
Yuji Ohya ◽  
Yasuharu Nakamura ◽  
Shigehira Ozono ◽  
Hideki Tsuruta ◽  
Ryuzo Nakayama

This paper describes a numerical study of the flow around flat plates with square leading and trailing edges on the basis of a finite-difference analysis of the two-dimensional Navier—Stokes equations. The chord-to-thickness ratio of a plate, d/h, ranges from 3 to 9 and the value of the Reynolds number based on the plate's thickness is constant and equal to 103. The numerical computation confirms the finding obtained in our previous experiments that vortex shedding from flat plates with square leading and trailing edges is caused by the impinging-shear-layer instability. In particular, the Strouhal number based on the plate's chord increases stepwise with increasing d/h in agreement with the experiment. Numerical analyses also provide some crucial information on the complicated vortical flow occurring near the trailing edge in conjunction with the vortex shedding mechanism. Finally, the mechanism of the impinging-shear-layer instability is discussed in the light of the experimental and numerical findings.


Author(s):  
V. Michelassi ◽  
M. Giachi

A typical compressor inlet volute is studied by using both experimental and numerical approaches. The highly distorted and complex flow pattern is measured in two typical configurations. Measurements include velocity, flow angle, Mach number and losses. The same geometries are analyzed by using a computer code which solves the three-dimensional Navier-Stokes equations. Turbulence effects are modeled by a two-equation turbulence model. The set of measurements shows the flow distortion induced by the volute, and also highlights how this distortion can be controlled or largely reduced by small modifications to the geometry. The computational results indicate an overall good agreement with the measurements and allow reproducing the changes in the pattern induced by the changes in volute geometry. Both the measurements and computations prove the importance of the optimal design of this component which controls the uniformity of the flow approaching the compressor impeller.


2021 ◽  
Vol 56 (6) ◽  
pp. 812-823
Author(s):  
I. I. But ◽  
A. M. Gailfullin ◽  
V. V. Zhvick

Abstract We consider a steady submerged laminar jet of viscous incompressible fluid flowing out of a tube and propagating along a solid plane surface. The numerical solution of Navier–Stokes equations is obtained in the stationary three-dimensional formulation. The hypothesis that at large distances from the tube exit the flowfield is described by the self-similar solution of the parabolized Navier–Stokes equations is confirmed. The asymptotic expansions of the self-similar solution are obtained for small and large values of the coordinate in the jet cross-section. Using the numerical solution the self-similarity exponent is determined. An explicit dependence of the self-similar solution on the Reynolds number and the conditions in the jet source is determined.


Sign in / Sign up

Export Citation Format

Share Document