Physical Properties of Thermoplastic Cassava Starches Extruded from Commercial Modified Derivatives in a Pilot Scale

2011 ◽  
Vol 117-119 ◽  
pp. 1007-1013
Author(s):  
Roung Rong Thongtan ◽  
Klana Rong Sriroth

Properties of thermoplastic starch (TPS) produced from commercial-grade modified cassava starches were investigated in a pilot scale for future practical production in plastic industry. Five types of commercial cassava starches including native, oxidized, acetylated, octenyl succinate and pregelatinized starches were transformed into TPS by extrusion. The morphology implied that degree of destructuration could be manipulated by adjusting amount of glycerol of the starch melt. All types of TPS exhibited strong water sensitivity especially when exposed to humid atmosphere (>0.75 water activity). Compared among these selected five commercial cassava starches, there were no significant differences in sorption properties. Tensile strength of the thermoplastic starches increased with increasing starch content, and a drastic gain was recorded for 80% starch content for all types of starches. The elongation at break seemed to reach a maximum value for native TPS and pregelatinized TPS when composition of starch was 70%. The concavity of elongation at break of both TPS’s could arise from greater mobility of starch molecules during deformation due to the presence of glycerol and water, so that the properties shifted from glassy to more fluid-like. When compared among the types of modification, pregelatinized starch produced a highly elongated TPS with lowest strength due to its complete destructuration of starch granules, and the octenyl succinate starch yielded the highest strength and most brittle TPS. This study proved that cassava starch had a considerable potential to further developed for biodegradable applications but higher degree of modification than these of common commercial grade was required to improve water resistance of its thermoplastic starch.

2013 ◽  
Vol 772 ◽  
pp. 38-43
Author(s):  
Hao Tang ◽  
Hai Tian Jiang ◽  
Bin Guo ◽  
Pan Xin Li

The TPS/LDPE starch plastic was prepared in the presence of the compatibilizer after the preparation of thermoplastic starch (TPS). The effect of starch content to properties of TPS/LDPE was studied by DSC, TG, electronic tensile machine and SEM. The results showed that the system had a good compatibility between TPS and LDPE, and the thermal properties were improved because of the forming of chemical bonds. When the TPS content is more than 58.54%, the tensile strength and elongation at break decreased dramatically, the main reason is the transformation of the continuous phase and the dispersed phase.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1084
Author(s):  
Ivan N. Ivanov ◽  
Vilém Zachleder ◽  
Milada Vítová ◽  
Maria J. Barbosa ◽  
Kateřina Bišová

An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In Chlamydomonas reinhardtii, laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in C. reinhardtii in a pilot-scale photobioreactor. The method was successfully applied and resulted in an almost 3-fold increase in the starch content of C. reinhardtii dry matter. Moreover, a maximum starch content at the supraoptimal temperature was reached within 1–2 days, compared with 5 days for the control culture at the optimal temperature (30 °C). Therefore, supraoptimal temperature treatment promotes rapid starch accumulation and suggests a viable alternative to other starch-inducing methods, such as nutrient depletion. Nevertheless, technical challenges, such as bioreactor design and light availability within the culture, still need to be dealt with.


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanongsak Chaiyaso ◽  
Pornchai Rachtanapun ◽  
Nanthicha Thajai ◽  
Krittameth Kiattipornpithak ◽  
Pensak Jantrawut ◽  
...  

AbstractCassava starch was blended with glycerol to prepare thermoplastic starch (TPS). Thermoplastic starch was premixed with sericin (TPSS) by solution mixing and then melt-blended with polyethylene grafted maleic anhydride (PEMAH). The effect of sericin on the mechanical properties, morphology, thermal properties, rheology, and reaction mechanism was investigated. The tensile strength and elongation at break of the TPSS10/PEMAH blend were improved to 12.2 MPa and 100.4%, respectively. The TPS/PEMAH morphology presented polyethylene grafted maleic anhydride particles (2 μm) dispersed in the thermoplastic starch matrix, which decreased in size to approximately 200 nm when 5% sericin was used. The melting temperature of polyethylene grafted maleic anhydride (121 °C) decreased to 111 °C because of the small crystal size of the polyethylene grafted maleic anhydride phase. The viscosity of TPS/PEMAH increased with increasing sericin content because of the chain extension. Fourier-transform infrared spectroscopy confirmed the reaction between the amino groups of sericin and the maleic anhydride groups of polyethylene grafted maleic anhydride. This reaction reduced the interfacial tension between thermoplastic starch and polyethylene grafted maleic anhydride, which improved the compatibility, mechanical properties, and morphology of the blend.


2014 ◽  
Vol 6 (1) ◽  
pp. 39-44
Author(s):  
Gabriella Rétháti ◽  
Krisztina Pogácsás ◽  
Tamás Heffner ◽  
Barbara Simon ◽  
Imre Czinkota ◽  
...  

Abstract We have monitored the behaviour of different polyethylene foils including virgin medium density polyethylene (MDPE), MDPE containing pro-oxydative additives (238, 242) and MDPE with pro-oxydative additives and thermoplastic starch (297) in the soil for a period of one year. A foil based on a blend of polyester and polylactic acid (BASF Ecovio) served as degradable control. The experiment was carried out by weekly measurements of conductivity and capacity of the soil, since the setup was analogous to a condenser, of which the insulating layer was the foil itself. The twelve replications allowed monthly sampling; the specimen taken out from the soil each month were tested visually for thickness, mechanical properties, morphological and structural changes, and molecular mass. Based on the obtained capacity values, we found that among the polyethylene foils, the one that contained thermoplastic starch extenuated the most. This foil had the greatest decrease in tensile strength and elongation at break due to the presence of thermoplastic starch. The starch can completely degrade in the soil; thus, the foil had cracks and pores. The polyethylene foils that contained pro-oxydant additives showed smaller external change compared to the virgin foil, since there was no available UV radiation and oxygen for their degradation. The smallest change occurred in the virgin polyethylene foil. Among the five examined samples, the commercially available BASF foil showed the largest extenuation and external change, and it deteriorated the most in the soil.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3236
Author(s):  
Peng Yin ◽  
Wen Zhou ◽  
Xin Zhang ◽  
Bin Guo ◽  
Panxin Li

In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), a novel reinforcement of dialdehyde lignocellulose (DLC) was prepared via the oxidation of lignocellulose (LC) using sodium periodate. Then, the DLC-reinforced TPS composites were prepared by an extrusion and injection process using glycerol as a plasticizer. The DLC and LC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the effects of DLC content on the properties of the DLC/TPS composites were investigated via the evaluation of SEM images, mechanical properties, thermal stability, and contact angles. XRD showed that the crystallinity of the DLC decreased due to oxidation damage to the LC. SEM showed good dispersion of the DLC in the continuous TPS phase at low amounts of DLC, which related to good mechanical properties. The tensile strength of the DLC/TPS composite reached a maximum at a DLC content of 3 wt.%, while the elongation at break of the DLC/TPS composites increased with increasing DLC content. The DLC/TPS composites had better thermal stability than the neat TPS. As the DLC content increased, the water resistance first increased, then decreased. The highest tensile strength and elongation at break reached 5.26 MPa and 111.25%, respectively, and the highest contact angle was about 90.7°.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6034
Author(s):  
Carlos A. Diaz ◽  
Rahul Ketan Shah ◽  
Tyler Evans ◽  
Thomas A. Trabold ◽  
Kathleen Draper

Biodegradable containers support zero-waste initiatives when alternative end-of-life scenarios are available (e.g., composting, bio digestion). Thermoplastic starch (TPS) has emerged as a readily biodegradable and inexpensive biomaterial that can replace traditional plastics in applications such as food service ware and packaging. This study has two aims. First, demonstrate the thermoformability of starch/polycaprolactone (PCL) as a thermoplastic material with varying starch loadings. Second, incorporate biochar as a sustainable filler that can potentially lower the cost and enhance compostability. Biochar is a stable form of carbon produced by thermochemical conversion of organic biomass, such as food waste, and its incorporation into consumer products could promote a circular economy. Thermoformed samples were successfully made with starch contents from 40 to 60 wt.% without biochar. Increasing the amount of starch increased the viscosity of the material, which in turn affected the compression molding (sheet manufacturing) and thermoforming conditions. PCL content reduced the extent of biodegradation in soil burial experiments and increased the strength and elongation at break of the material. A blend of 50:50 starch:PCL was selected for incorporating biochar. Thermoformed containers were manufactured with 10, 20, and 30 wt.% biochar derived from waste coffee grounds. The addition of biochar decreased the elongation at break but did not significantly affect the modulus of elasticity or tensile strength. The results demonstrate the feasibility of using starch and biochar for the manufacturing of thermoformed containers.


2012 ◽  
Vol 626 ◽  
pp. 1048-1053
Author(s):  
Norshahida Sarifuddin ◽  
Hanafi Ismail ◽  
Ahmad Zuraida

Recently, blending of common hydrocarbon polymer with natural based materials has gain much interest towards the development of degradable composite. In this study, a series of low density polyethylene (LDPE)/thermoplastic sago starch (TPSS) blend reinforced with kenaf core fiber (KCF) with starch content ranging from 10 to 40 % were prepared via melt-blending method. For this study, kenaf loading was fixed at 20 % (by weight). The blended samples were characterized by means of tensile test and morphological study. The experimental result shows that there is a gradual decrease in tensile strength, modulus and elongation at break with increase in starch loading. The scanning electron micrograph (SEM) supports the findings of tensile properties.


2013 ◽  
Vol 772 ◽  
pp. 34-37
Author(s):  
Hao Tang ◽  
Hai Tian Jiang ◽  
Bin Guo ◽  
Pan Xin Li

Corn starch was irradiated by 60Coγ ray, and then the thermoplastic starch plastic (TPS) was prepared by adding glycerol. Microstructure, thermal and mechanical properties of the corn starch and starch plastic were studied in details by FTIR, DSC and SEM. Results showed that the starch macromolecular structure was damaged by irradiation, and with increased irradiation time, the temperature of melt endothermic peak and tensile strength decreased, elongation at break increases for starch plastic, the thermoplastic property of starch was enhanced obviously.


2017 ◽  
Vol 751 ◽  
pp. 230-235 ◽  
Author(s):  
Suchipha Wannaphatchaiyong ◽  
Prapaporn Boonme ◽  
Wiwat Pichayakorn

This study aimed to develop gelatin (GEL) and gelatin/Alpha starch (GEL/αSt) dissolving films as drug delivery by casting method. Because these films were brittle and lack of elasticity, therefore, glycerin (GLY), propylene glycol (PG) or polyethylene glycol 400 (PEG) in various amounts (5-30 part per hundred of gelatin; phg) was used as plasticizer. It was found that all types and amounts of plasticizer could be blended into gelatin solution and the transparent GEL films were formed, except the GEL/PEG films presented in opaque characteristics. However, 30 phg GLY blended film was too softy. Increasing amount of plasticizer caused a decrease in tensile strength and increase in elongation at break (EAB) of films. These GEL films swelled, dissolved and eroded in 2 hours. The αSt was also blended, and the effects of αSt amounts (5-30 phg) and plasticizer types (at 25 phg) on GEL film properties were studied. The αSt dispersions mixed well in gelatin solution and gave homogenous films. The swelling and erosion of GEL/αSt films in water were faster than those of GEL films. Increasing αSt amount prolonged the swelling time and decreased the degradation rate of GEL/αSt films. The tensile strength of GEL/αSt/GLY films slightly increased when the αSt amount increased but those of PEG and PG blended films were not different. The EAB of all plasticizer blended films decreased when the amount of αSt increased. Either lidociane or lidociane hydrochloride was mixed in GEL/αSt/GLY dissolving films to use as local anesthetic. The morphology, Fourier Transform Infrared Spectroscopy confirmed their compatibilities in these films, but Differential Scanning Calorimeter showed some changes that should be further evaluated.


Sign in / Sign up

Export Citation Format

Share Document