Design and Implementation of a Voltage Booster Circuit for High-Pressure Injector Drives in GDI Engines

2011 ◽  
Vol 128-129 ◽  
pp. 1367-1370
Author(s):  
Wen Chang Tsai

A DC/DC voltage booster circuit is essential to design for the high-pressure (H.P.) injector driving circuit since the power supply voltages for various H.P. injectors are DC 60~90 V rather than DC 12~14V battery voltages. The DC 12~14V battery voltages have to be boosted up to the stable DC 60~90 V voltages supply for being able to drive various H.P. injectors. The new H.P. injector driving circuit consists of a voltage booster circuit and an originally designed three-stage power MOSFETs injector driving circuit to control the dc-link power supply voltage. The dynamic performance of a H.P. injector driven by the designed electrical driving circuit with the voltage booster are simulated and analyzed. The stability and electrical characteristics for the voltage booster under various injection pulse durations and engine speeds are investigated. The fuel injection quantities, supply voltages and injector driving currents of the H.P. injector fed by the new injector driving circuit is illustrated and analyzed in the paper. The experimental results show that this injector driving circuit with a newly designed voltage booster is capable of operating stably to drive the H.P. injector and obtain the accurate fuel injection quantities in the air-fuel ratio control of engines.

2011 ◽  
Vol 130-134 ◽  
pp. 2795-2799 ◽  
Author(s):  
Wen Chang Tsai ◽  
Zong Hua Wu

This paper develops a superior injector driving circuit for a 500c.c. motorcycle GDI engine. The POWER MOSFET component is introduced in the design of the three-pulse injector driving circuit. Experiments for the designed electric driving circuit are investigated to verify its feasibility. The experiments of the H.P. injector driving circuit are conducted for the fuel injection quantity of the H.P. injector under 80~100 bar fuel pressure, 1200~2000 μs injection pulse duration and DC 55~65V power supply voltage. PWM control is introduced to the last pulse 3A holding current for fast cut-off response time of the H.P. injector. Next, Taguchi method was used to lead the design of experiments (DOE). The fuel injection quantities were measured in the various control parameters as engine speeds, power supply voltages, injector driving currents, and fuel supply pressures by the designed injector driving circuit. Effect of these control parameters of the high-pressure (H.P.) injector driving circuit on the fuel injection quantity are analyzed in the paper. Taguchi orthogonal array optimizes the operating parameters of the H.P. fuel injecting system. Results show that the three-pulse POWER MOSFET injector driving circuit is capable of operating stably and assure the accurate injection quantity of the H.P. injector.


Author(s):  
Wen-Chang Tsai

In GDI engine applications, high-pressure (H.P.) injectors typically require to be designed to be capable of rapid response for GDI engines in order to be driven in the rapid response with respect to magnetic actuators, allowing for example more precise air-fuel ratio control in the GDI engines. The H.P. fuel injector is a highly dynamic component requiring careful voltage and pressure input modulation to achieve the required fuel injection quantities of GDI engines. The accurate fuel injection curves are a key influence for this technology, therefore will require the estimation of the fuel flow rate to be realized. In this paper, a PIC microchip for programming injector drive circuits is implemented to improve the performance of a H.P. fuel injector and tested to verify its feasibility. In the proposed injector drive circuit, powers MOSFETs directly control the charging/discharging current by a dsPIC30F4011 microchip. Design and analysis of the proposed injector drive circuit are presented. Next, effects of total pulse width, injector supply voltage, fuel system pressure and PWM operation on fuel injection quantities of a H.P. fuel injector are measured. Also, the measured data of the H.P. fuel injector fed by the injector driving circuit are defined as the fuel injection curves. Finally experimental results are provided for verification of the proposed injector drive circuit.


2018 ◽  
Vol 8 (4) ◽  
pp. 36 ◽  
Author(s):  
Wen-Chang Tsai ◽  
Tung-Sheng Zhan

The high-pressure (HP) injector is a highly dynamic component requiring careful voltage and pressure input modulation to achieve the required fuel injection quantities of gasoline direct injection (GDI) engines. Accurate fuel injection curves are a key influence for this technology, and therefore, will require an accurate estimation of fuel flow rate to be realized. In order to be driven to rapid response with respect to solenoid valve coils, HP injectors typically require to be designed to be capable of rapid response in GDI engines. In this paper, the design and analysis of the proposed injector drive circuit are presented. Next, the effects of total pulse width, injector supply voltage, fuel system pressure, and pulse width modulation (PWM) operation on fuel injection quantities of an HP injector are measured for achieving robust performance and stability in the presence of bounded errors of the GDI injectors due to total pulse width, injector’s supply voltage, fuel pressure and PWM operation. Additionally, the fuel injection quantities of the HP injector are measured by tuning the parameters of the injector drive circuit with the PWM operation. These are defined as the fuel injection curves. Finally, experimental results are provided for verification of the proposed injector drive circuit.


2018 ◽  
Vol 232 ◽  
pp. 04038
Author(s):  
Chimdi Tadesse Girma ◽  
chi song

—Bidirectional DC/DC converters are used in the interface of the battery bank and the high voltage direct current terminal of an inverter. The performance of the system depends on the control of voltage and current across the circuit. Voltage control in eliminates the need for changing the control loop when the power supply is changed to the alternating current source. The report explains the constant power supply voltage control. The diagram for the bidirectional dc/dc converters is analysed and the mathematical representations are given. The dynamic performance of the circuit is calculated to give the efficiency of the system in DC-link voltage control.


2011 ◽  
Vol E94-C (6) ◽  
pp. 1072-1075
Author(s):  
Tadashi YASUFUKU ◽  
Yasumi NAKAMURA ◽  
Zhe PIAO ◽  
Makoto TAKAMIYA ◽  
Takayasu SAKURAI

2016 ◽  
Vol E99.C (10) ◽  
pp. 1219-1225
Author(s):  
Masahiro ISHIDA ◽  
Toru NAKURA ◽  
Takashi KUSAKA ◽  
Satoshi KOMATSU ◽  
Kunihiro ASADA

1993 ◽  
Vol 29 (15) ◽  
pp. 1324 ◽  
Author(s):  
L.E. Larson ◽  
M.M. Matloubian ◽  
J.J. Brown ◽  
A.S. Brown ◽  
M. Thompson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document