Numerical Simulation for Groundwater-Source Heat Pump Engineering Disposing Wells Scheme in the Coastal Region

2011 ◽  
Vol 148-149 ◽  
pp. 1408-1412
Author(s):  
Jun Pan ◽  
Chang Liu ◽  
Yang Li

For analysis the MOMA FengHui residential of BaYuquan area ground- water source heat pump engineering on the influence of seawater invasion,Established the groundwater flow and solute transport and temperature coupling numerical model,Simulated forecast the change tendency of the groundwater flow and solute and temperature of two different disposing Wells scheme. Simulation results show that the two kinds of disposing Wells solutions are not cause seawater invasion, the second disposing Wells scheme help to prevent the occurrence of seawater invasion.

2012 ◽  
Vol 588-589 ◽  
pp. 1278-1281
Author(s):  
Jun Pan ◽  
Shi Xiao Li ◽  
Chang Liu ◽  
Yang Li

More and more people have take more attention on the problem like Seawater intrusion, The same floor recharge and "heat transfixion". This article has established the groundwater flow and solute transport and temperature coupling numerical model,to simulate the underground water temperature’s change by changing the wells’ spacing manner. Simulation results show that the two kinds of disposing Wells solutions are not cause seawater invasion, the second disposing Wells scheme help to prevent the occurrence of seawater invasion.


2012 ◽  
Vol 174-177 ◽  
pp. 3027-3030
Author(s):  
Wei Wei ◽  
Ming Zhong Wang ◽  
Jun Pan

In order to avoid the heat transfixion among users in the concentration area of the water source heat pump, a suitable layout of pumps for drawing and recharging wells is required. Finite element method is adopted to establish the numerical model of groundwater temperature to predict the change trend of water temperature. The results of the simulation indicate that the groundwater temperature change from 6.3 to 14.2 °C in winter, and from 11.5 to 21.2 °C in summer. These results meet the requirements of the drawing and recharging water in the water source heat pump engineering and are able to avoid the heat transfixion among users. The effect of drawing and recharging water in the water source heat pump engineering to the changes of the groundwater’s temperature field can be analyzed quantitatively through establishing the proper numerical simulation which provides a reference to scientifically design the layout of pumps for drawing and recharging water.


Author(s):  
Aseem Saxena

Fluorine is the most electronegative and most reactive halogen. Fluorine is 13th most common element on earth crust found in the form of fluoride. Concentration of fluoride below 1 mg/l are believed beneficial in the prevention of dental carries or tooth decay, but above 1.5mg/l, it increases the severity of the deadly diseases fluorosis, which is incurable in India. The whole study was conducted in Gorakhpur region to know about the concentration of fluoride, mainly in rural areas of the district. We have collected 64 drinking water samples from 9 blocks of the district in which we took 6 number of ground water samples from each block so total 54 number of samples were collected from the groundwater source and 8 number of samples were taken from surface water source. Out of 54 ground water samples, 36 numbers of samples were taken from India Mark-II hand pumps and rest 18 number of samples were taken from shallow depth hand pumps and tested to determine the concentration of fluoride. From our assessment we came to know that in this region the concentration of fluoride in groundwater ranges between 0.004 to 1.42mg/l, minimum value is found in the surface water source and the maximum value is found from the ground water source.The samples collected from both ground water and as well as surface water were taken from potable sources i.e. they are used for drinking purposes in daily routine. After the testing and analyzing the samples it is come to know that surface water has quite lower levels fluoride compare to ground water. The conclusion of this work is to give information about the concentration of fluoride in groundwater and surface water of the district.


2011 ◽  
Vol 1 (32) ◽  
pp. 6 ◽  
Author(s):  
Eizo Nakaza ◽  
Tsunakiyo Iribe ◽  
Muhammad Abdur Rouf

The paper aims to simulate Tsunami currents around moving and fixed structures using the moving-particle semi-implicit method. An open channel with four different sets of structures is employed in the numerical model. The simulation results for the case with one structure indicate that the flow around the moving structure is faster than that around the fixed structure. The flow becomes more complex for cases with additional structures.


2013 ◽  
Vol 442 ◽  
pp. 593-598
Author(s):  
Xue Xia Wang ◽  
Peng Chong Guan ◽  
Hai Peng Li ◽  
Li Hui Wang ◽  
Na Zhang ◽  
...  

Flanging and bending forming processes of the crossmember in car intermediate floor are investigated respectively by using numerical simulation technology. The numerical model of the crossmember was established and its press forming effect was simulated to determine the feasible process parameters affecting its manufacturability. Forming limit diagram and thickness distribution diagram are used to evaluate simulation results of different process schemes. And then optimum values of process parameters for flanging and bending are found, which can reduce the tendencies of wrinkling, springback and crackling during the stamping of the product.


Author(s):  
Ji Yang ◽  
Zhiyong Hao ◽  
Ruwei Ge ◽  
Liansheng Wang ◽  
Kang Zheng

The engine cooling module consists of condenser, radiator and fan (CRFM), which has long been recognized as a main source of sound and vibration in the automotive industry. As the engine becomes increasingly compact and powerful, customers gradually have higher expectations for automobile NVH performance than ever before. Thus the reduction of noise and vibration induced by CRFM becomes critical, which can greatly influence overall NVH performance. Combined with experimental and numerical methods, this paper focuses on the identification and optimization of steering wheel (SW) vibration induced by CRFM for a vehicle with V6 engine while engine idling. The numerical model established in this paper, based on Matlab and taking chassis vibration into account, can predict and optimize the vibration of CRFM under specific working condition with the help of energy decoupling and Newmark-Beta methodology. The optimization design of CRFM mainly involves the stiffness, position and angle of isolators. The numerical simulation results are validated experimentally, which can help further design of CRFM.


Author(s):  
Yan-Lei Liu ◽  
Jin-Yang Zheng ◽  
Shu-Xin Han ◽  
Yong-Zhi Zhao

A numerical model for dispersion of hydrogen in hydrogen powered automobiles was established basing on finite element method with species transport and reaction module of FLUENT. And corresponding numerical simulations were done in order to analysis the dispersion of hydrogen due to leakage from different position of the storage cylinder on the automobiles. Also, the distribution of the hazard region due to hydrogen dispersion was obtained. The simulation results show that the baffle above the cylinder can accumulate the hydrogen. Therefore, the high concentration region of hydrogen exists near the baffle. The study can provide reference for hydrogen sensor placement and safety design of hydrogen powered automobiles.


2021 ◽  
Vol 2123 (1) ◽  
pp. 012005
Author(s):  
Syafruddin Side ◽  
Abdul Saman ◽  
Nur Rezky Ramadhan ◽  
Sahlan Sidjara

Abstract This study aims to determine the accuracy of Runge kutta order-4 (RK-4) and order-5 (RK-4) as a solution to the SEIRS numerical model for online game addiction in mathematics students at Universitas Negeri Makassar. The model used in online game addiction is the Suspected-Exposed-Infected-Recovered-Suspected (SEIRS). This is a quantitative research with secondary data obtained from a closed questionnaire where students were given several answer choices. It starts by examining the SEIRS model of online game addiction, before determining general solutions using the RK-4 and RK-5 techniques. The model is then analyzed and simulated using RK-4 and RK-5 techniques, which are compared to determine the most accurate one. The results show that the SEIRS simulation model is accurate for predicting the number of online game addictions. Furthermore, the Runge-Kutta technique can be used to observe the trend of increasing cases of online games among students. The numerical simulation showed that the RK-4 technique is more accurate than the RK-5 when the population is larger. The simulation results of the SEIRS model using MAPLE provided an estimated increase in online game addiction that can be used by students and their parents to limit the number of permits associated with launching online games.


2021 ◽  
Author(s):  
Yu Lei ◽  
Xiang Yuan Zheng ◽  
Hua-dong Zheng

Abstract This work is dedicated to comparing the experimental and numerical results of the dynamic responses of a novel floating system integrating a floating offshore wind turbine with a steel fish farming cage (FOWT-SFFC) under wind and wave loadings. The patents of this floating system have been successfully licensed recently in China and USA. The experimental study is carried out in the Ocean Basin of Tsinghua Shenzhen International Graduate School, with a Froude scaling of 1:30. A small commercial wind turbine is used to produce the scaled wind loads on FOWT-SFFC in terms of the similarity of thrust force. In this paper, the setup of model tests is described first. Second, a numerical model of prototype FOWT-SFFC is built in the software OrcaFlex. Then, this numerical model is calibrated and updated by the results of free decay tests and static offset tests in the basin. The numerical model also adopts three sets of drag coefficients. Finally, the experimental results of FOWT-SFFC under a variety of load cases are presented and compared with the numerical simulation results. They include seakeeping tests for hydrodynamic motion response amplitude operators (RAOs) and dynamic responses corresponding to normal operating and survival conditions. The numerical simulation results show that, though they are in good agreement with model test data especially on time records of dynamic responses, they are sensitive to the selection of drag coefficients particularly on extreme values and low-frequency spectral contents. Appropriate drag coefficients are suggested to be used in the numerical model for a specific environmental condition. Drag coefficients benchmarked from the free decay tests may not be suitable for moderate and harsh wave conditions.


Sign in / Sign up

Export Citation Format

Share Document