Hydrodynamic Performance of Leading-Edge Tubercle Three-Dimensional Airfoil

2012 ◽  
Vol 152-154 ◽  
pp. 1509-1515 ◽  
Author(s):  
Feng Feng ◽  
Xiang Ru Cheng ◽  
Xiang Yang Qi ◽  
Xin Chang

Based on RANS method, this paper studied leading-edge tubercle three-dimensional airfoil, which had effect on hydrodynamic performance of three-dimensional airfoil. Both section configurations of the two three-dimensional airfoil models were NACA0020 airfoil. The research method was numerical simulation. First, the leading-edge profile of the first airfoil model was normal. To get stalling angle of the first model, it analyzed hydrodynamic performance of the first model under different angle of attacks at Re=1.35*105. Then, the second model had a sinusoidal leading-edge profile. The second model chose the same Reynolds number. By comparison the numerical calculation results between the first and the second model, the stalling angle of second model delays 3°than the normal airfoil, and the lift coefficient of the second model increases 11.92% than the normal model. The results have laid the foundation for optimization design of leading-edge tubercle three-dimensional airfoil.

Author(s):  
Hongtao Gao ◽  
Wencai Zhu

The duck's webbed feet are observed by using electron microscopy, and observations indicate that the edges of the webbed feet are the shape of protuberances. Therefore, the rudder with leading-edge protuberances is numerically studied in the present investigation. The rudder has a sinusoidal leading-edge profile along the spanwise direction. The hydrodynamic performance of rudder is analyzed under the influence of leading-edge protuberances. The present investigations are carried out at Re = 3.2 × 105 and 8 × 105. In the case of Re = 3.2 × 105, the curves of lift coefficient illustrate that the protuberant leading-edge scarcely affects the lift coefficient of bionic rudder. However, the drag coefficient of the bionic rudder is markedly lower than that of the unmodified rudder. Therefore, the lift-to-drag ratio of the bionic rudder is obviously higher than the unmodified rudder. In another case of Re = 8 × 105, the advantageous behavior of the bionic rudder with leading-edge protuberances is mainly performed in the post-stall regime. The flow mechanism of the significantly increased efficiency by the protuberant leading-edge is explored. It is obvious that the pairs of counter-rotating vortices are presented over the suction surface of bionic rudder, and therefore, the flow is more likely to adhere to the suction surface of bionic rudder.


Author(s):  
Chang Cai ◽  
Zhigang Zuo ◽  
Shuhong Liu

Leading edge protuberance modifications on airfoils or wings have attracted extensive attentions as a new passive technique for separation control. In this paper, the hydrodynamic performance of a NACA 634-021 foil and a modified foil with leading-edge protuberances were numerically investigated using Spalart-Allmaras turbulence model. Compared to the sharp decline of baseline lift coefficient, the stall angle of the modified foils was advanced and the decline of lift coefficient became mild, and the post-stall performance was improved. A special bi-periodic flow pattern may occur and stay extremely steady at a wide range of attack angles, accompanied with a relatively steady lift. The transformation from single-periodicity to bi-periodicity occurred within a small range of range of attack angle. A couple of counter-rotating streamwise vortex was formed on the shoulder of each protuberance, altering the vorticity line to share a similar shape as the leading-edge profile. At larger angles of attack, the development of streamwise vortex would be accompanied with transformation to lateral vortex, where strong interaction may happen and give rise to the occurrence of bi-periodic condition. The formation mechanism and control method of the special phenomenon should be investigated more deeply in the future.


2020 ◽  
Vol 19 (3) ◽  
pp. 388-397
Author(s):  
Wei Wang ◽  
Yuwei Wang ◽  
Dagang Zhao ◽  
Yongjie Pang ◽  
Chunyu Guo ◽  
...  

Abstract The hydrodynamic performance of a three-dimensional finite-length rotating cylinder is studied by means of a physical tank and numerical simulation. First, according to the identified influencing factors, a hydrodynamic performance test of the rotating cylinder was carried out in a circulating water tank. In order to explore the changing law of hydrodynamic performance with these factors, a particle image velocimetry device was used to monitor the flow field. Subsequently, a computational field dynamics numerical simulation method was used to simulate the flow field, followed by an analysis of the effects of speed ratio, Reynolds number, and aspect ratio on the flow field. The results show that the lift coefficient and drag coefficient of the cylinder increase first and then decrease with the increase of the rotational speed ratio. The trend of numerical simulation and experimental results is similar.


2013 ◽  
Vol 631-632 ◽  
pp. 518-523 ◽  
Author(s):  
Xiang Li ◽  
Min You

Owing to the lack of a good theory method to obtain the accurate equivalent elastic constants of hexagon honeycomb sandwich structure’s core, the paper analyzed mechanics performance of honeycomb sandwich structure’s core and deduced equivalent elastic constants of hexagon honeycomb sandwich structure’s core considering the wall plate expansion deformation’s effect of hexagonal cell. And also a typical satellite sandwich structure was chose as an application to analyze. The commercial finite element program ANSYS was employed to evaluate the mechanics property of hexagon honeycomb core. Numerical simulation analysis and theoretical calculation results show the formulas of equivalent elastic constants is correct and also research results of the paper provide theory basis for satellite cellular sandwich structure optimization design.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2021 ◽  
Vol 9 (5) ◽  
pp. 462
Author(s):  
Yuchen Shang ◽  
Juan J. Horrillo

In this study we investigated the performance of NACA 0012 hydrofoils aligned in tandem using parametric method and Neural Networks. We use the 2D viscous numerical model (STAR-CCM+) to simulate the hydrofoil system. To validate the numerical model, we modeled a single NACA 0012 configuration and compared it to experimental results. Results are found in concordance with the published experimental results. Then two NACA 0012 hydrofoils in tandem configuration were studied in relation to 788 combinations of the following parameters: spacing between two hydrofoils, angle of attack (AOA) of upstream hydrofoil and AOA of downstream hydrofoil. The effects exerted by these three parameters on the hydrodynamic coefficients Lift coefficient (CL), Drag Coefficient (CD) and Lift-Drag Ratio (LDR), are consistent with the behavior of the system. To establish a control system for the hydrofoil craft, a timely analysis of the hydrodynamic system is needed due to the computational resource constraints, analysis of a large combination and time consuming of the three parameters established. To provide a broader and faster way to predict the hydrodynamic performance of two hydrofoils in tandem configuration, an optimal artificial neural network (ANN) was trained using the large combination of three parameters generated from the numerical simulations. Regression analysis of the output of ANN was performed, and the results are consistent with numerical simulation with a correlation coefficient greater than 99.99%. The optimized spacing of 6.6c are suggested where the system has the lowest CD while obtaining the highest CL and LDR. The formula of the ANN was then presented, providing a reliable predicting method of hydrofoils in tandem configuration.


Aerospace ◽  
2020 ◽  
Vol 7 (9) ◽  
pp. 123
Author(s):  
Sho Uranai ◽  
Koji Fukudome ◽  
Hiroya Mamori ◽  
Naoya Fukushima ◽  
Makoto Yamamoto

Ice accretion is a phenomenon whereby super-cooled water droplets impinge and accrete on wall surfaces. It is well known that the icing may cause severe accidents via the deformation of airfoil shape and the shedding of the growing adhered ice. To prevent ice accretion, electro-thermal heaters have recently been implemented as a de- and anti-icing device for aircraft wings. In this study, an icing simulation method for a two-dimensional airfoil with a heating surface was developed by modifying the extended Messinger model. The main modification is the computation of heat transfer from the airfoil wall and the run-back water temperature achieved by the heater. A numerical simulation is conducted based on an Euler–Lagrange method: a flow field around the airfoil is computed by an Eulerian method and droplet trajectories are computed by a Lagrangian method. The wall temperature distribution was validated by experiment. The results of the numerical and practical experiments were in reasonable agreement. The ice shape and aerodynamic performance of a NACA 0012 airfoil with a heater on the leading-edge surface were computed. The heating area changed from 1% to 10% of the chord length with a four-degree angle of attack. The simulation results reveal that the lift coefficient varies significantly with the heating area: when the heating area was 1.0% of the chord length, the lift coefficient was improved by up to 15%, owing to the flow separation instigated by the ice edge; increasing the heating area, the lift coefficient deteriorated, because the suction peak on the suction surface was attenuated by the ice formed. When the heating area exceeded 4.0% of the chord length, the lift coefficient recovered by up to 4%, because the large ice near the heater vanished. In contrast, the drag coefficient gradually decreased as the heating area increased. The present simulation method using the modified extended Messinger model is more suitable for de-icing simulations of both rime and glaze ice conditions, because it reproduces the thin ice layer formed behind the heater due to the runback phenomenon.


2012 ◽  
Vol 562-564 ◽  
pp. 1438-1441
Author(s):  
Li Hua Fu ◽  
Juan Juan Jiang ◽  
Dai Xing Zhang ◽  
Hai Quan Li ◽  
Hua Song ◽  
...  

In this article, the Pro/Engineer virtual prototyping technology is used for three dimensional entity modeling, assembly, and simulation analysis of 1000KN·m large backstop in four design plans to confirm the integrity and assembling of backstop. By using the ANSYS/LS-DYNA software, it makes numerical simulation analysis of the backstop in non-return process, and through the analysis comparison to the simulation result, it obtains the optimization design plan of the 1000KN·m backstop.


2011 ◽  
Vol 243-249 ◽  
pp. 3423-3426 ◽  
Author(s):  
Yang Yuan ◽  
Wei Ning Liu ◽  
De Yun Ding ◽  
Xin Cai Gao ◽  
Meng Ma ◽  
...  

Drift-PBA method has been widely used in the construction of metro station. Yet the discussion about the excavation sequence of headings was still a controversy. In this paper, three-dimensional numerical simulation of a metro station construction by drift-PBA was conducted by MIDAS/GTS. The heading construction sequence was studied in the environmental impacts due to the construction, and some suggestions were provided for the site. The calculation results indicated that excavating the upper headings previously could effectively control the shapes of settlement troughs and the deformations of pipelines, and diminish the disturbance to the stratum.


2012 ◽  
Vol 538-541 ◽  
pp. 804-809 ◽  
Author(s):  
San Fa Xin ◽  
Xin Hou Wang

The characteristic of air pressure field in melt blowing with dual slots was studied. The main research method was the numerical simulation of three dimensional. The results show that the air pressure field is symmetric. There exist two sections: the pressure difference section and the zero-pressure difference section along the whole centerline. In the pressure difference section, there also exist three sub-sections.


Sign in / Sign up

Export Citation Format

Share Document