Theoretical and Experimental Research on the Features of Cutting Force in Rotary Ultrasonic Face Milling of K9 Glass

2012 ◽  
Vol 157-158 ◽  
pp. 1674-1679 ◽  
Author(s):  
Cheng Long Zhang ◽  
Ping Fa Feng ◽  
Jian Fu Zhang ◽  
Zhi Jun Wu ◽  
Ding Wen Yu

This study introduces rotary ultrasonic face milling (RUFM) process into flat surface machining of K9 glass. The effective cutting velocity, and cutting length of single diamond particle were presented in RUFM. The model of material removal for RUFM was developed through examining indentation fracture mechanics theory and material removal characteristics of brittle materials, and analyzing kinematics properties of diamond grits in RUFM. With a view of comparative researches, the cutting force of RUFM and diamond milling of K9 glass are compared. The experimental results tell that the relationship between the cutting depth (dc) and the ultrasonic amplitude (A) of the cutter has remarkable effects on cutting force, which was also discussed in the kinematic characteristics analysis section. The results also show that RUFM process can significantly reduce cutting force and the effects of process variable changes on cutting force in RUFM are weaker as dc is smaller than A. However, the reduction trends of the cutting forces in RUFM are very small and even increased in some process conditions, as dc is larger than A. It suggests that the cutting depth should be smaller than the ultrasonic amplitude of the cutter with RUFM process to obtain better processing performance.

2011 ◽  
Vol 230-232 ◽  
pp. 221-225 ◽  
Author(s):  
Cheng Long Zhang ◽  
Ping Fa Feng ◽  
Zhi Jun Wu ◽  
Ding Wen Yu

Rotary ultrasonic machining process, regarded as one of the effective processing methods for hard-brittle materials, is introduced into drilling K9 glass in this paper. The effective cutting velocity, cutting depth, and cutting length of single diamond particle are determined by analyzing the kinematics characteristic of diamond tool in rotary ultrasonic drilling (RUD). Experiments are conducted to study the influences of process variables (spindle speed, feedrate) on cutting force, chipping size, and surface roughness in RUD. As comparison study, the processing performances between RUD and diamond drilling are also discussed. The experimental results show that the RUD process can significantly reduce cutting force and the value of chippings size, which inferred that RUD process can improve machining efficiency and make the machining cost lower. It is also concluded that the effective cutting depth of diamond particles is the main factor for surface roughness in RUD of K9 glass.


2011 ◽  
Vol 230-232 ◽  
pp. 644-648 ◽  
Author(s):  
Cheng Long Zhang ◽  
Ping Fa Feng ◽  
Shu You Zheng ◽  
Zhi Jun Wu ◽  
Ding Wen Yu

K9 glass is regarded as one of the most difficult-to-machine materials due to its mechanical characteristics, which is known as an excellent performance optical material. In this paper, rotary ultrasonic face milling (RUFM) process is introduced into machining flat surface of K9 glass using right-angle diamond cutter for the first time. It studies the influence of process variables (spindle speed, feedrate, cutting depth, and cutting width) on cutting force and surface roughness through the single-factor experiments. The cutting force is measured by a KISTLER dynamometer, and the surface roughness is measured by a talysurf. The investigation also includes a comparison between RUFM and diamond milling. The experimental results tell that the RUFM process can significantly reduce cutting force, which inferred that RUFM can have less tool wear and longer tool life. It also shows that the surface roughness in RUFM of K9 glass is slightly higher than that obtained in diamond milling.


Author(s):  
Chenglong Zhang ◽  
Pingfa Feng ◽  
Jianfu Zhang ◽  
Zhijun Wu ◽  
Dingwen Yu

Author(s):  
Danil Y. Pimenov ◽  
Munish K. Gupta ◽  
Ivan N. Erdakov ◽  
Adel T. Abbas ◽  
Mahmoud S. Soliman ◽  
...  

Face milling is a well known commercial process highly used in heavy industries that consumes high amount of power. Besides power issue, modern manufacturing industries are aiming for per part cost reduction keeping the product quality unimpaired. Unexpectedly if the part is rejected in any stage of manufacturing, the cost of manufacturing dramatically increases. Major cause of part rejection is excessive tool wear that imparts poor surface profile or catastrophic tool failure that causes adherence of broken tool debris onto machined surface. Furthermore, the tool wear is associated with sliding distance (frictional distance) and the tool life quantifies the cost of tools. As such, from the perspective of manufacturing industries it is imperative to optimize the surface quality parameter, cost of part, power consumption, and material removal – this is exactly what is accomplished here. By this work, it is possible to conserve power consumption, produce parts with lower cost, manufacture with uncompromising surface quality and enhanced material removal rate. Moreover, as intermediate factors of interest, the influences of sliding distance, tool life and tool flank wear on the overall machining performance are evaluated. The multi-objective optimization by Grey Relational Analysis (GRA) revealed that for improved product performance and fast manufacturing (case 1) optimum results are: feed per tooth fz = 0.25 mm/tooth, cutting speed vc = 392.6 m/min and cutting length l = 0.5 mm; for resource conservation (case 2) the optimum results are: feed per tooth fz = 0.125 mm/tooth, cutting speed vc = 392.6 m/min, cutting length l = 0.5 mm.


Author(s):  
Sundar Marimuthu ◽  
Bethan Smith

This manuscript discusses the experimental results on 300 W picosecond laser machining of aerospace-grade nickel superalloy. The effect of the laser’s energetic and beam scanning parameters on the machining performance has been studied in detail. The machining performance has been investigated in terms of surface roughness, sub-surface thermal damage, and material removal rate. At optimal process conditions, a picosecond laser with an average power output of 300 W can be used to achieve a material removal rate (MRR) of ∼140 mm3/min, with thermal damage less than 20 µm. Shorter laser pulse widths increase the material removal rate and reduce the resultant surface roughness. High scanning speeds improve the picosecond laser machining performance. Edge wall taper of ∼10° was observed over all the picosecond laser machined slots. The investigation demonstrates that high-power picosecond lasers can be used for the macro-machining of industrial components at an acceptable speed and quality.


1995 ◽  
Vol 117 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Z. J. Pei ◽  
D. Prabhakar ◽  
P. M. Ferreira ◽  
M. Haselkorn

An approach to modeling the material removal rate (MRR) during rotary ultrasonic machining (RUM) of ceramics is proposed and applied to predicting the MRR for the case of magnesia stabilized zirconia. The model, a first attempt at predicting the MRR in RUM, is based on the assumption that brittle fracture is the primary mechanism of material removal. To justify this assumption, a model parameter (which models the ratio of the fractured volume to the indented volume of a single diamond particle) is shown to be invariant for most machining conditions. The model is mechanistic in the sense that this parameter can be observed experimentally from a few experiments for a particular material and then used in prediction of MRR over a wide range of process parameters. This is demonstrated for magnesia stabilized zirconia, where very good predictions are obtained using an estimate of this single parameter. On the basis of this model, relations between the material removal rate and the controllable machining parameters are deduced. These relationships agree well with the trends observed by experimental observations made by other investigators.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2014 ◽  
Vol 536-537 ◽  
pp. 1431-1434 ◽  
Author(s):  
Ying Zhu ◽  
Yin Cheng Zhang ◽  
Shun He Qi ◽  
Zhi Xiang

Based on the molecular dynamics (MD) theory, in this article, we made a simulation study on titanium nanometric cutting process at different cutting depths, and analyzed the changes of the cutting depth to the effects on the work piece morphology, system potential energy, cutting force and work piece temperature in this titanium nanometric cutting process. The results show that with the increase of the cutting depth, system potential energy, cutting force and work piece temperature will increase correspondingly while the surface quality of machined work piece will decrease.


Author(s):  
Zepeng Li ◽  
Rong Yan ◽  
Xiaowei Tang ◽  
Fang Yu Peng ◽  
Shihao Xin ◽  
...  

Abstract In aviation and navigation, complicated parts are milled with high-speed low-feed-per-tooth milling to decrease tool vibration for high quality. Because the nonlinearity of the cutting force coefficient (CFC) is more evident with the relatively smaller instantaneous uncut chip thickness, the stable critical cutting depth and its distribution against different tool postures are affected. Considering the nonlinearity, a nonlinear dynamic CFC model that reveals the effect of the dynamic instantaneous uncut chip thickness on the dynamic cutting force is derived based on the Taylor expansion. A five-axis bull-nose end milling dynamics model is established with the nonlinear dynamic CFC model. The stable critical cutting depth distribution with respect to tool posture is analyzed. The stability results predicted with the dynamic CFC model are compared with those from the static CFC model and the constant CFC model. The effects of tool posture and feed per tooth on stable critical cutting depth were also analyzed, and the proposed model was validated by cutting experiments. The maximal stable critical cutting depths that can be achieved under different tool postures by feed per tooth adjustment were calculated, and corresponding distribution diagrams are proposed for milling parameter optimization.


1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


Sign in / Sign up

Export Citation Format

Share Document