Simulation Research on the Member Removal Method of the Typical Construction in Collapse Accident

2012 ◽  
Vol 166-169 ◽  
pp. 2658-2662
Author(s):  
Xin Chen

Component removal method is usually taken to open up relief channel. It is necessary to make a research on the feasibility of removing and make an analysis on some problems. This paper summarized the typical collapsed buildings and the typical rescue technique used in Wenchuan earthquake. The numerical model of typical buildings collapsed was gotten . Based on the characteristics of the application of removing technique, a numerical analysis was made. The results show that the angle between the component and ground should not be changed. The direction in which the components are lifted should be in a moderate direction with other lap components .Try best to make its contact area produce some friction force.

2017 ◽  
Vol 42 (1) ◽  
pp. 5-24 ◽  
Author(s):  
Janusz Ćwiklak

AbstractThe aim of this article is to present findings of simulation research of a stork impact with a helicopter windshield. Besides we developed a numerical model of the stork, based on biometrical data, taking into account various properties of its head, neck, torso and wings. It appears that the research findings which take into consideration the bird’s shape differ from those using a simplified bird model in the shape of a cylinder or a sphere. In order to conduct an analysis of a bird impact onto an aircraft windshield, we used the LS_DYNA software package. In the classic variant with the 3.6 kg bird model, cylinder-shaped with spherical endings, the windshield became damaged at the velocity of 200 km/h for a standard windshield (3.81 mm). For the same velocity, we conducted simulation which used the multimaterial model. It appeared that the windshield did not become damaged. Therefore, the shape of the dummy bird also affects the velocity at which the damage occurs. Too wide simplification of the dummy bird shape may lead to lowered values of the velocity.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
J. M. Fernández Oro ◽  
J. González ◽  
R. Barrio Perotti ◽  
M. Galdo Vega

In this paper, a deterministic stress decomposition is applied over the numerical three-dimensional flow solution available for a single volute centrifugal pump. The numerical model has proven in previous publications its robustness to obtain the impeller to volute-tongue flow interaction, and it is now used as starting point for the current research. The main objective has been oriented toward a detailed analysis of the lack of uniformity in the flow that the volute tongue promotes on the blade-to-blade axisymmetric pattern. Through this analysis, the fluctuation field may be retrieved and main interaction sources have been pinpointed. The results obtained with the deterministic analysis become of paramount interest to understand the different flow features found in a typical centrifugal pump as a function of the flow rate. Moreover, this postprocessing tool provides an economic and easy procedure for designers to compare the different deterministic terms, also giving relevant information on the unresolved turbulence intensity scales. Complementarily, a way to model the turbulent effects in a systematic way is also presented, comparing their impact on the performance with respect to deterministic sources in a useful framework, that may be applied for similar kinds of pumps.


2012 ◽  
Vol 468-471 ◽  
pp. 2248-2254
Author(s):  
Qiang Li ◽  
Wan Kui Bu ◽  
Hui Xu ◽  
Xiao Bo Song

The numerical model of top coal drawing in gently inclined seam is built based on PFC2d software. By comparing with the theory of drawn-body movement law, it can be obtained that the shape of top coal drawn-body accords with the theory of random medium movement. The research results show that the form of the shape equation of top coal drawn-body is uniform while the top coal caving angle is different. On the other hand, with the difference of top coal caving angle and drawing height, the shape of top coal drawn-body is differential at the meso scale, which depends on the parameters of the shape equation of top coal drawn-body.


2010 ◽  
Vol 3 (3) ◽  
pp. 346-356 ◽  
Author(s):  
G. Savaris ◽  
P. H. Hallak ◽  
P. C. A. Maia

The objective of this article is to present the results obtained in a study on the interaction between the behavior of the structure and the foundation settlements and verify the influence of normal load distribution on the columns. In this mechanism, known as structure soil interaction (SSI), as the building is constructed, a transfer of loads occurs from the columns which tend to settle more to those that tend to settle less. The study was conducted in a building which had its settlements monitored from the beginning of construction. For this purpose, a linear tridimensional numerical model was constructed and numerical analysis was performed, using the finite elements method. In these analyses, numerical models corre- sponding to the execution of each floor were used, considering the settlements measured in each stage of the construction. The results of analy- ses showed that the effect of SSI are significant for calculating the normal efforts on the columns, particularly on those located in the first floors.


2002 ◽  
Vol 12 (9) ◽  
pp. 319-320
Author(s):  
T. Nitta ◽  
H. Haga ◽  
K. Kawabata

We measured the static friction force of agar gel-on-glass plate in water. The static friction force is independent of the apparent contact area between the agar gel and the glass plate. It increases with waiting time, that is, contact duration prior to motion. The static friction force is represented well by a power law of waiting time. The waiting time dependence is different from those of solid-on-solid systems. These results are discussed, based on asperity contact model.


2020 ◽  
Vol 31 (13) ◽  
pp. 1617-1637
Author(s):  
Mohammad Naghavi Zadeh ◽  
Iman Dayyani ◽  
Mehdi Yasaee

A novel cellular mechanical metamaterial called Fish Cells that exhibits zero Poisson’s ratio in both orthogonal in-plane directions is proposed. Homogenization study on the Fish Cells tessellation is conducted and substantially zero Poisson’s ratio behavior in a homogenized tessellation is shown by numerical analysis. Experimental investigations are performed to validate the zero Poisson’s ratio feature of the metamaterial and obtain force–displacement response of the metamaterial in elastic and plastic zone. A detailed discussion about the effect of the numerical model approach and joints on the structural response of the metamaterial is presented. Morphing skin is a potential application for Fish Cells metamaterial because of the integration benefits of zero Poisson’s ratio design. The structural integrity of the Fish Cells is investigated by studying the stiffness augmentation under tension and in presence of constraints on transverse edges. Finally, geometrical enhancements for improved integrity of the Fish Cells are presented that result in substantially zero stiffness augmentation required for morphing skins.


Author(s):  
Michael Brünig ◽  
Marco Schmidt ◽  
Steffen Gerke

Abstract The paper deals with a numerical model to investigate the influence of stress state on damage and failure in the ductile steel X5CrNi18-10. The numerical analysis is based on an anisotropic continuum damage model taking into account yield and damage criteria as well as evolution equations for plastic and damage strain rate tensors. Results of numerical simulations of biaxial experiments with the X0- and the H-specimen presented. In the experiments, formation of strain fields are monitored by digital image correlation which can be compared with numerically predicted ones to validate the numerical model. Based on the numerical analysis the strain and stress quantities in selected parts of the specimens are predicted. Analysis of damage strain variables enables prediction of fracture lines observed in the tests. Stress measures are used to explain different stress-state-dependent damage and failure mechanisms on the micro-level visualized on fracture surfaces by scanning electron microscopy.


2019 ◽  
Vol 137 ◽  
pp. 01004
Author(s):  
Sebastian Werle ◽  
Szymon Sobek ◽  
Zuzanna Kaczor ◽  
Łukasz Ziółkowski ◽  
Zbigniew Buliński ◽  
...  

Paper present the experimental and numerical analysis of biomass photopyrolysis process. The experimental tests is performed on the solar pyrolysis installation, designed in Institute of Thermal Technology, Gliwice. It consist of the copper reactor powered by artificial light simulating sun. The paper shows the result of the solar pyrolysis of wood. The yield of the main fraction as a function of the process temperature is presented. Additionally the gas composition is determined. The numerical model is prepared in the Ansys Fluent 18.2 software, which allow at the same time for capturing geometry of the real system and easy change of input data. The results indicate that both the product yields (liquid, solid and gaseous) and gas components shares are strongly influenced by pyrolysis parameters and feedstock composition.


2019 ◽  
Vol 9 (20) ◽  
pp. 4289 ◽  
Author(s):  
Sangki Park

In South Korea, the construction of new multi-unit residential structures has been continuously increasing in order to accommodate multiple households in single structures. However, the presence of walls and floors shared with neighbors makes these structures exceptionally vulnerable to floor noise transmission when the noise of everyday life occurs. In particular, South Korea has many social problems associated with such floor noise, which require the utmost attention and immediate resolution. In this study, a 17-story structure was selected as a test structure. Field measurements were carried out. A numerical model for the 17-story structure was developed in order to perform a vibro-acoustic analysis. The validation of the numerical model comparing with the field measurement data results shows a good agreement. Finally, it is concluded that numerical analysis can be applied to resolve floor noise problems arising in multi-unit residential structures.


Sign in / Sign up

Export Citation Format

Share Document