Influence of Incorporating Recycled Aggregate on Carbonation Performance of Recycled Concrete

2012 ◽  
Vol 193-194 ◽  
pp. 882-886
Author(s):  
Ying Huang ◽  
Zhi Heng Deng ◽  
Yue Feng Hu ◽  
Hui Xu

Recycled concrete is a kind of green and new material. With the application of construction, more research should be carried on its carbonization performance, not only focusing on its mechanical properties. Recycled concretes with different W/C (0.45、0.55 and 0.65) and recycled aggregate mix proportions (0、30%、50%、70%and 100%) are made to test their carbonation depth. The results show that water-cement ratio and recycled aggregate mix proportions have interactive influence on carbonization performance of recycled concrete. Influence of recycled aggregate on carbonation depth depends on two conflicting aspects: one is beneficial effect due to high water absorption; another is harmful effect caused by damage structure. A new model of RAC carbonation depth is suggested based on the study.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gai-Fei Peng ◽  
Yan-Zhu Huang ◽  
Hai-Sheng Wang ◽  
Jiu-Feng Zhang ◽  
Qi-Bing Liu

This paper presents an experimental research on mechanical properties of recycled aggregate concrete (RAC) at low and high water/binder (W/B) ratios. Concrete at two W/B ratios (0.255 and 0.586) was broken into recycled concrete aggregates (RCA). A type of thermal treatment was employed to remove mortar attached to RCA. The RAC at a certain (low or high) W/B ratio was prepared with RCA made from demolished concrete of the same W/B ratio. Tests were conducted on aggregate to measure water absorption and crushing values and on both RAC and natural aggregate concrete (NAC) to measure compressive strength, tensile splitting strength, and fracture energy. The mechanical properties of RAC were lower than those of NAC at an identical mix proportion. Moreover, the heating process caused a decrease in compressive strength and fracture energy in the case of low W/B ratio but caused an increase in those properties in the case of high W/B ratio. The main type of flaw in RCA from concrete at a low W/B ratio should be microcracks in gravel, and the main type of flaw in RCA from concrete at a high W/B ratio should be attached mortar.


2019 ◽  
Vol 14 ◽  
pp. 155892501987470 ◽  
Author(s):  
Jinghai Zhou ◽  
Tianbei Kang ◽  
Fengchi Wang

The pore structure is one of the major factors affecting the mechanical properties of waste fiber recycled concrete. In this article, the pore structure and strength performance of waste fiber recycled concrete are experimentally studied. The design variables are water–cement ratio, recycled aggregate replacement rate, waste fiber length, and volume fraction of waste fibers. The pore structure characteristic parameters of waste fiber recycled concrete are investigated using mercury intrusion porosimetry test and fractal theory. The complex distribution of pore structure in space is quantitatively described by fractal dimension, and the pore structure is comprehensively evaluated. The results show that the water–cement ratio has the largest influence on the pore structure, and the fiber length has the least influence. The optimum volume fraction of waste fibers is 0.12%. There is an obvious linear relationship between the pore volume fractal dimension and strength. With the increase in the fractal dimensions, the compressive and splitting tensile strengths increase. Macroscopic mechanical properties of waste fiber recycled concrete can be predicted by the pore structure.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2021 ◽  
Vol 13 (13) ◽  
pp. 7498
Author(s):  
Tan Li ◽  
Jianzhuang Xiao

Concrete made with large-size recycled aggregates is a new kind of recycled concrete, where the size of the recycled aggregate used is 25–80 mm, which is generally three times that of conventional aggregate. Thus, its composition and mechanical properties are different from that of conventional recycled concrete and can be applied in large-volume structures. In this study, recycled aggregate generated in two stages with randomly distributed gravels and mortar was used to replace the conventional recycled aggregate model, to observe the internal stress state and cracking of the large-size recycled aggregate. This paper also investigated the mechanical properties, such as the compressive strength, crack morphology, and stress–strain curve, of concrete with large-size recycled aggregates under different confining pressures and recycled aggregate incorporation ratios. Through this research, it was found that when compared with conventional concrete, under the confining pressure, the strength of large-size recycled aggregate concrete did not decrease significantly at the same stress state, moreover, the stiffness was increased. Confining pressure has a significant influence on the strength of large-size recycled aggregate cocrete.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2011 ◽  
Vol 418-420 ◽  
pp. 406-410
Author(s):  
Jun Liu ◽  
Yao Li ◽  
Dan Dan Hong ◽  
Yu Liu

Abstract. Recycled aggregate—rural building material wastes pretreated by cement mortar—are applied into concrete with different replacement rates: 0, 25%, 50%, 75%, and 100%. Results from measurements of compressive strength, cleavage tensile strength, mass loss after fast freeze-thaw cycles, and compressive strength loss indicate that a different recycled aggregate replacement rate certainly influences concrete mechanical properties and frost resistance. Recycled aggregate replacement rates less than 75% performs better than common concrete. Data from the 100% replacement rate is worse than that of rates less than 75% but still satisfy the general demands of GB standard on C30 concrete.


Author(s):  
Samer Ghosn ◽  
Nour Cherkawi ◽  
Bilal Hamad

Abstract This paper reports on the first phase of a multi-phase research program conducted at the American University of Beirut (AUB) on “Hemp and Recycled Aggregates Concrete” (HRAC). HRAC is a new sustainable concrete material where hemp fibers are incorporated in the mix, the coarse aggregate content is reduced by 20% of the concrete volume, and 50% of the natural coarse aggregates (NCA) are replaced by recycled concrete aggregates (RCA), thus saving on natural resources and addressing the problem of waste material disposal. The effect of the new material on concrete consistency and hardened mechanical properties was studied. Also, few durability tests were conducted. Variables included percentage replacement of NCA by RCA (0 or 50%), maximum size aggregate (10 or 20 mm), hemp fiber length (20 or 30 mm), and hemp fiber treatment (alkali or silane or acetyl). Fiber characterization tests were conducted including morphology, crystallinity, and thermal analysis. The tests indicated that alkali and acetyl fiber treatments were better than the silane treatment in removing impurities on the fiber surface. Also, alkali and acetyl treatments have increased the crystallinity of the fibers while silane treatment decreased it. Results of mechanical properties tests showed that while HRAC has considerable lower compressive strength and modulus of elasticity than plain concrete, the flexural strength and splitting tensile strength are not significantly affected. The flexural stress–strain behavior of HRAC is ductile as compared to the brittle behavior of the plain concrete beams indicating positive impact on toughness and energy dissipation. The durability tests indicated that whereas HRAC mixes have higher absorption than plain concrete, they have better thermal properties and their resistance to freeze–thaw cycles is comparable to plain concrete. All test results were not significantly affected by fiber length or fiber treatment.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950013 ◽  
Author(s):  
Liping Ying ◽  
Yijiang Peng ◽  
Hongming Yang

In this paper, the base force element method (BFEM) for dynamic damage problems is proposed. And the BFEM model was applied to investigate the dynamic mechanical behavior of recycled aggregate concrete (RAC). Any convex polygon recycled aggregate was simulated. A constitutive relationship of dynamic damage was given. The compression test under dynamic loadings on the recycled concrete specimen was simulated. The stress–strain softening curve, variation law of dynamic enhancement coefficient and the damage pattern were researched under different strain rates. The dynamic properties of recycled concrete materials at high strain rate are also studied. The effect of different aggregate distribution on the mechanical properties of concrete was studied. The results of dynamic calculation of recycled concrete materials by this method are compared with the experimental results. The numerical simulation results are in good agreement with the experimental results. The comparative analysis on the dynamic mechanical properties of RAC and natural aggregate concrete (NAC) was also studied. The results show that the BFEM can be used to analyze the dynamic mechanical properties of RAC and NAC under high strain rate, and can be used for large-scale engineering calculations.


2012 ◽  
Vol 193-194 ◽  
pp. 1371-1375
Author(s):  
Yong San Cheng ◽  
Ke Qiang Yu ◽  
Shuang Xi Wang

In order to better understand the recycled concrete aggregate, it is essential to investigate the different mixture ratio in it. For determining the better mixture ratio of recycled concrete aggregate, the experimental investigation was conducted by making use of recycled concrete aggregate of different ratio instead of small stones in concrete, while maintaining the proportion of other raw materials of concrete unchanged. Its mechanical properties were also investigated. It is found that the better materials proportion of recycled concrete is that sand: recycled aggregate: water= 1: 1.8 : 2.1: 0.55.


2011 ◽  
Vol 71-78 ◽  
pp. 331-337
Author(s):  
Wen Bai Liu ◽  
Xia Li

Mechanical properties of recycled concrete under different conditions were studied in this paper. Based on three kinds of replacement percentage of recycled aggregate and four kinds of seawater corrosion conditions, the experimental study of mechanical properties of recycled concrete specimens corroded by seawater and produced under vacuum conditions were conducted, and compared with that of ordinary concrete specimens. Testing results show that compressive strength of recycled concrete decreases with the increase of both the replacement rate of recycled aggregate and the corrosion time by seawater, with the maximum reduce value is 17.96% and 24.52%; Vacuum conditions effectively improve the strength of recycled concrete, improved value is 1.03-1.19 times of the same replacement ratio of recycled aggregate, and 1.00-1.16 times of the ordinary concrete. It provides the reference for marine engineering application of recycled concrete.


Sign in / Sign up

Export Citation Format

Share Document