Constitutive Model of Solid Propellant with Mechanical Damage and Aging

2012 ◽  
Vol 198-199 ◽  
pp. 197-201 ◽  
Author(s):  
Xiao Jun Zhang ◽  
Xin Long Chang ◽  
Shi Ying Zhang ◽  
Shun Xiang Chen ◽  
Jie Tang Zhu

Mechanical damage and aging are the main mechanisms of nonlinear characteristics of solid propellant.A comprehensive big strain visco-elastic constitutive model with damage mechanics and aging was established, by using the visco-elastic constitutive equations form expressed by the generalized variable, introducing damage variables, and taking the relaxation modules after aging to characterize the aging. The correctness of the model was verified through experiments. the parameters need by modeling are easy to be got, and converted into the finite element code to do the simulation computation, then the model is suitable for the engineering application.

2012 ◽  
Vol 249-250 ◽  
pp. 113-117
Author(s):  
Yan Chen ◽  
Qing Wu Wang ◽  
Quan Shan

In elasto-plasticity computation on materials by sub-increase finite element method, in general, it is necessary to calculate the consistent tangent modulus of elements. In this paper, based on the backward Euler integration, for an unified viscoplasticity constitutive equations, a new expression of consistent tangent modulus is derived for rate-dependent plasticity. The constitutive equations and consistent tangent modulus expression are implemented into a commercial finite element code-MARC. Numerical examples are given to verify the finite element implementation.This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


Author(s):  
Qiuyi Shen ◽  
Zhenghao Zhu ◽  
Yi Liu

A three-dimensional finite element model for scarf-repaired composite laminate was established on continuum damage model to predict the load capacity under tensile loading. The mixed-mode cohesive zone model was adopted to the debonding behavior analysis of adhesive. Damage condition and failure of laminates and adhesive were subsequently addressed. A three-dimensional bilinear constitutive model was developed for composite materials based on damage mechanics and applied to damage evolution and loading capacity analyses by quantifying damage level through damage state variables. The numerical analyses were implemented with ABAQUS finite element analysis by coding the constitutive model into material subroutine VUMAT. Good agreement between the numerical and experimental results shows the accuracy and adaptability of the model.


2015 ◽  
Vol 750 ◽  
pp. 266-271 ◽  
Author(s):  
Yu Zhou ◽  
Xue Dong Chen ◽  
Zhi Chao Fan ◽  
Yi Chun Han

The creep behavior of 2.25Cr-1Mo-0.25V ferritic steel was investigated using a set of physically-based creep damage constitutive equations. The material constants were determined according to the creep experimental data, using an efficient genetic algorithm. The user-defined subroutine for creep damage evolution was developed based on the commercial finite element software ANSYS and its user programmable features (UPFs), and the numerical simulation of the stress distribution and the damage evolution of the semi V-type notched specimen during creep were studied. The results showed that the genetic algorithm is a very efficient optimization approach for the parameter identification of the creep damage constitutive equations, and finite element simulation based on continuum damage mechanics can be used to analyze and predict the creep damage evolution under multi-axial stress states.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 991 ◽  
Author(s):  
Abel Cherouat ◽  
Houman Borouchaki ◽  
Zhang Jie

Automatic process modeling has become an effective tool in reducing the lead-time and the cost for designing forming processes. The numerical modeling process is performed on a fully coupled damage constitutive equations and the advanced 3D adaptive remeshing procedure. Based on continuum damage mechanics, an isotropic damage model coupled with the Johnson–Cook flow law is proposed to satisfy the thermodynamic and damage requirements in metals. The Lemaitre damage potential was chosen to control the damage evolution process and the effective configuration. These fully coupled constitutive equations have been implemented into a Dynamic Explicit finite element code Abaqus using user subroutine. On the other hand, an adaptive remeshing scheme in three dimensions is established to constantly update the deformed mesh to enable tracking of the large plastic deformations. The quantitative effects of coupled ductile damage and adaptive remeshing on the sheet metal forming are studied, and qualitative comparison with some available experimental data are given. As illustrated in the presented examples this overall strategy ensures a robust and efficient remeshing scheme for finite element simulation of sheet metal‐forming processes.


2004 ◽  
Vol 126 (3) ◽  
pp. 367-373 ◽  
Author(s):  
Y. Wei ◽  
C. L. Chow ◽  
K. J. Lau ◽  
P. Vianco ◽  
H. E. Fang

This paper presents an investigation of lead-free Sn-Ag base alloy, 95.5Sn-3.9Ag-0.6Cu, both experimentally and analytically. Experimentally, the deformation behavior of the material was measured for different temperatures (25°C and 1000°C) over a range of strain rates (10−5 to 10−3/s) under isothermal and thermomechanical conditions. Development of a unified viscoplastic constitutive model followed, taking into account the effects of the measured strain rate and temperature changes. The temperature rate effects are considered in the evolution equation of back stress. In order to include material degradation in the solder, the theory of damage mechanics is applied by introducing two damage variables in the viscoplastic constitutive model. Finally, the constitutive model is coded into a general-purpose finite element computer program (ABAQUS) through its user-defined material subroutine (UMAT). The damage-coupled finite element analysis (FEA) is then employed to monitor the condition of failure of a notched component. The predicted and measured maximum loads have been compared and found to be satisfactory. In addition, the calculated damage distribution contours enable the identification of potential failure site for failure analysis.


Author(s):  
Yi Zhang ◽  
P-Y Ben Jar ◽  
Shifeng Xue ◽  
Lin Li

A phenomenon-based hybrid approach of experimental testing and finite element simulations is used to describe the fracture behavior of pipe-grade polyethylene. The experimental testing adopts a modified D-split test method to stretch the pipe ring (notched pipe ring) specimens that have symmetric, double-edged flat notches along the pipe direction. Two series of experimental testing were conducted: (1) monotonic loading till fracture and (2) monotonic loading to a predefined strain level, keeping constant displacement for a period of time, and then unloaded. Crosshead speeds of 0.01, 1, and 100 mm/min were used in both series of tests. Likewise, two series of finite element simulation were conducted to establish the constitutive equations, either with or without considering damage evolution during the deformation process. The constitutive equation without the consideration of damage was established using results from the first series of experimental testing, and that with damage was inspired from the second series which showed the decrease in unloading modulus with the increase of crosshead speed or the predefined strain level. The results show that with the consideration of damage evolution, the constitutive equations enable the finite element simulation to determine the whole stress–strain relationship during both necking and fracture processes.


Author(s):  
Andrew C. Collop ◽  
A. (Tom) Scarpas ◽  
Cor Kasbergen ◽  
Arian de Bondt

The development and finite element (FE) implementation of a stress-dependent elastoviscoplastic constitutive model with damage for asphalt is described. The model includes elastic, delayed elastic, and viscoplastic components. The strains (and strain rates) for each component are additive, whereas they share the same stress (i.e., a series model). This formulation was used so that a stress-based nonlinearity and sensitivity to confinement could be introduced into the viscoplastic component without affecting the behavior of the elastic and delayed elastic components. A simple continuum damage mechanics formulation is introduced into the viscoplastic component to account for the effects of cumulative damage on the viscoplastic response of the material. The model is implemented in an incremental formulation into the CAPA-3D FE program developed at Delft University of Technology in the Netherlands. A local strain compatibility condition is utilized such that the incremental stresses are determined explicitly from the incremental strains at each integration point. The model is demonstrated by investigating the response of a semirigid industrial pavement structure subjected to container loading. Results show that the permanent vertical strains in the non-stress-dependent case are significantly lower than the permanent vertical strains in the stress-dependent case. Results also show that in the stress-dependent case, there is a more localized area of high permanent vertical compressive strain directly under the load at approximately halfdepth in the asphalt compared with the non-stress-dependent case, in which the distribution is more even.


Author(s):  
Badrinath Veluri ◽  
Henrik Myhre Jensen

This study focuses on the compressive failure mechanism in the form of kinkband formation in fiber composites. Taking into account the non-linearities of the constituents, a constitutive model for unidirectional layered materials has been developed and incorporated as a user material in a commercially available finite element code to study effects of kinkband inclination angle and micro-geometry on kinkband formation. The localization of deformation into a single kinkband is studied. In the post failure regime a state is reached where deformation in the kinkband gets stabilized and the kinkband broadens under steady-state conditions.


Sign in / Sign up

Export Citation Format

Share Document