Shear Capacity of Concrete Beams Reinforced with Continuous FRP Rectangular Spirals

2012 ◽  
Vol 204-208 ◽  
pp. 3009-3015
Author(s):  
Bing Hong Li ◽  
Shi Yong Jiang ◽  
Qian Hua Shi ◽  
Xian Qi Hu

The failure modes and the shear capacity of concrete beams reinforced with FRP reinforcement were discussed through an experimental investigation, in which continuous FRP rectangular spirals were used for shear reinforcement, while ordinary deformed steel bars are used for longitudinal reinforcement. Six concrete beams reinforced with FRP spirals were tested, the main variables considered were the shear reinforcement ratios, the shear span to depth ratios and the longitudinal reinforcement ratios. Two concrete beams of equal shear capacity which reinforced with continuous steel rectangular spirals were also tested to compare the behavior of concrete beams reinforced with different materials of spirals. All beams were tested as simply supported members subjected to a three-point load, the span of the beams varied in terms of different shear span to depth ratios. The test results show that the shear capacity and shear failure modes are greatly influenced by the shear reinforcement ratios and the shear span to depth ratios, the shear resistance provided by steel spirals is higher than that provided by FRP spirals in the case of equal shear capacity of beams, which is attributed to the differences in material properties and may result in different shear failure types. Based on the experimental program, four mechanical models are derived to give more accurate predictions of the shear capacity of test beams, the calculation results of these models are compared with that of the existing shear formulas or equations for concrete beams reinforced with FRP stirrups or spirals. The rotating-angle softened truss model, the strut-and-tie model, the shear formulas derived from the truss-arch model and Zsutty equations are suggested through comparison.

2012 ◽  
Vol 217-219 ◽  
pp. 2435-2439
Author(s):  
Ying Tao Li ◽  
Shi Yong Jiang ◽  
Bing Hong Li ◽  
Qian Hua Shi ◽  
Xian Qi Hu

An experimental program was carried out by the author to investigate the shear behavior of concrete beams reinforced with continuous FRP rectangular spirals, the main variables considered in the test were the shear reinforcement ratio and the shear span to depth ratio and the longitudinal reinforcement ratio. However, the experimental program is inadequate to gain insight into the shear behavior of the members. First, the quantities of test specimens were too small, only six beams were made and tested, the experimental database was so limited that the resultant analytical results and conclusions may not be sound enough. Second, not all the main factors that have influences on the shear behavior of the members have been treated as variables in the experimental program, such as the effective transverse compression stress and the concrete compression strength, the influences of these two factor on the shear behavior of the members were not clear yet through the experimental study. Considering the insufficient information provided by the experimental investigation, the parametric analysis of the shear behavior of the members was carried out, and a revised rotating-angle softened truss model for the shear analysis of the members was proposed as the analytical tool. Based on the proposed model, the influences of various factors on the shear capacity and shear failure modes of the members were discussed, related nonlinear analysis was carried out using the arithmetic of iteration and step approximation, and several FORTRAN codes were written accordingly. Through the experimental study and the parametric analysis, it is indicated that the shear capacity and the shear failure modes of the members are greatly influenced by three major factors, including the shear reinforcement ratio and the shear span to depth ratio and the effective transverse compression stress. The influences of the concrete compression strength and the longitudinal reinforcement ratio on the shear capacity are not noticeable comparatively. The shear capacity is little affected by the shear span to depth ratio in the case of the shear-tension failure, there is no noticeable correlation between longitudinal reinforcement ratio and the shear failure modes.


2006 ◽  
Vol 324-325 ◽  
pp. 995-998
Author(s):  
Cheol Woo Park ◽  
Jong Sung Sim

Even though the application of fiber reinforced polymer (FRP) as a concrete reinforcement becomes more common with various advantages, one of the inherent shortcomings may include its brittleness and on-site fabrication and handling. Therefore, the shape of FRP products has been limited only to a straight bar or sheet type. This study suggests a new technique to use glass fiber reinforced polymer (GFRP) bars for the shear reinforcement in concrete beams, and investigates its applicability. The developed GFRP stirrup was used in the concrete instead of ordinary steel stirrups. The experimental program herein evaluates the effectiveness of the GFRP stirrups with respect to different shear reinforcing ratios under three different shear span-to-depth testing schemes. At the same shear reinforcing ratio, the ultimate loads of the beams were similar regardless the shear reinforcing materials. Once a major crack occurs in concrete, however, the failure modes seemed to be relatively brittle with GFRP stirrups. From the measured strains on the surface of concrete, the shear stresses sustained by the stirrups were calculated and the efficiency of the GFRP stirrups was shown to be 91% to 106% depending on the shear span-to-depth ratio.


2011 ◽  
Vol 266 ◽  
pp. 126-129 ◽  
Author(s):  
Zuo Hu Wang ◽  
Xiu Li Du ◽  
Jing Bo Liu

Five beams were tested up to failure to study the shear behavior of concrete beams prestressed with fiber reinforced polymer (FRP). Different factors were taken into consideration: the type of prestressing tendons and the shear span ratio. The shear failure modes and the influence of different factors on shear behavior were investigated in details. The test results showed that FRP prestressed beams without stirrups had two shear failure modes: diagonal compression failure and shear compression failure; the shear span ratio was the most important factor to determine the failure mode and shear capacity of the prestressed beams. The shear capacity of concrete members prestressed with FRP tendons was lower than that of concrete beams prestressed with steel cables.


Author(s):  
Muhammad K. Kayani ◽  
Wasim Khaliq ◽  
Muhammad K. Shehzad

Major factors contributing to the shear behavior in reinforced concrete (RC) beams have been identified as compressive strength of concrete, shear span to effective depth ratio, and longitudinal reinforcement. Though significant, few of these factors are not fully incorporated in ACI code provisions for design of minimum shear reinforcement. To investigate the effect of these parameters, an analytical and experimental study was undertaken on the shear behavior of ordinary strength RC slender beams with moderate longitudinal reinforcement. The experimental program consisted of testing of eight simply supported RC slender beams subjected to two concentrated loads at a shear span to depth ratio (a/d) of 2.5 and equipped with varying shear reinforcement according to four different criteria. Ultimate shear strengths obtained in this experimental program are compared to the analytical shear strengths calculated according to existing as well as proposed equations. Test results exhibit that, the modified equation proposed in this work gives more accurate prediction of shear capacity of RC beams.


2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2013 ◽  
Vol 275-277 ◽  
pp. 1167-1171
Author(s):  
Xin Ding Wang ◽  
Hang Dai ◽  
Yong Chao Zhang

Based on independent research and development of a CFRP tendons wedge-type anchorage, the shear tests of six CFRP external prestressing concrete beams were done. Among them, CFRP external tendons of three pieces were installed in straight line while other pieces were installed in curved line. The results of experimental research show that shear behaviour of concrete beams prestressed with CFRP external tendons are the similar process to the traditional prestressed reinforced concrete beams. They go through the elastic stage, the stage of crack extension, the yield stage of internal hoop reinforcements at the intersection of inclined cracks and the failure stage. When external CFRP tendons are arranged in the same situation, the cracking load and the shear capacity of concrete beams prestressed with CFRP external tendons reduce gradually along with the increase of shear-span ratio,.When shear-span ratio is equal, the cracking load and the shear capacity of concrete beams prestressed with curved arrangement of CFRP external tendons are larger than those of concrete beams prestressed with straight arrangement of CFRP external tendons. Compared with traditional concrete beams prestressed with external steel bars, due to elasticity modulus and shear modulus of CFRP tendons are both smaller than those of steel bars, the mid-span deflection of concrete beams prestressed with CFRP external tendons at the time of shear failure is bigger than that of traditional concrete beams prestressed with external steel bars under the same circumstance.


This paper presents a study of shear behaviour of reinforced concrete beams. The major parameters used were type of shear reinforcement, namely stirrups alone, wire mesh alone and combination of both wire mesh and stirrups as shear reinforcement. The replacement of wire mesh was done on the basis of weight with stirrups. The experimental program includes four beams. All the beams were tested using two point loading system. It is evident from the result that the use of wire mesh enhanced improved shear performance and bearing capacity in the examined beams. Beams with wire mesh as shear reinforcement and combination of both wire mesh and stirrups exhibited some amount of increase in shear capacity with respect to the beams with stirrups alone as shear reinforcement. Furthermore beams with wire mesh and combination of wire mesh and stirrups as reinforcement exhibited less number of crack patterns compared beams with stirrups.


2020 ◽  
Vol 10 (4) ◽  
pp. 5940-5946
Author(s):  
G. M. Colyvas ◽  
Y. Malecot ◽  
Y. Sieffert ◽  
S. Aboudha ◽  
C. Kanali

Wire ropes as internal shear reinforcements could are an economic alternative to conventional stirrups in rectangular concrete beams, mainly due to their attractive advantages such as high flexibility, light weight, and strength. The aim of this study is to enhance the understanding of the shear behavior of concrete beams with continuous spiral-type wire rope as internal shear reinforcement. In order to achieve this objective, an experimental program involving the testing of six beam specimens under four-point load was conducted. Digital image correlation technique was employed to study the crack formation and propagation in the beam specimens. The test results demonstrated that using continuous spiral-type wire rope as shear reinforcement is highly favorable for diagonal crack control. In particular, spiral-type wire rope specimens attained serviceability crack width at a higher load than that of normal stirrup beam specimens.


Over the past few decades, a significant growth was observed on utilization of steel fibers in Reinforced Concrete (R.C) members. Past research studies on hybrid concrete endorsed optimum utilization of steel fibers (1.5% by volume) as it effectively contributed to improve flexural properties of reinforced concrete members such as R.C beams and slabs .But the contribution of fibers against shear resistance mechanism of R.C beams are not identified well in the previous research. In this context an experimental program was conducted to find Shear contribution and associated Parameters of fibers in the Steel Fiber Reinforced Concrete (SFRC) beams. A series of test programmes are conducted on three full scale reinforced concrete beams (NSF: No steel fibers, BSF1: Steel fibers in shear span, BSF2: Steel fibers in full span) with different configuration of shear reinforcement by using varied range of SFRC in the tested beam. The test results evaluated on the basis of strength and durability aspects at service loads and limit of failure conditions. The results concluded that the presence of steel fibers in reinforced concrete beam significantly contributed to induce shear resistance mechanism and ductile property of R.C beam. This improvement observed in BSF2, when the SFRC constituted in shear span region and the rest of R.C beam arranged with minimum conventional stirrups as shear reinforcement. Further the steel fibers possess good compatibility with concrete and steel reinforcement ,which enhance mechanical and serviceability conditions of R.C beam such as shear strength, ductility, stiffness with respect to strength and deflection, crack width during serviceability conditions of the beam.


2020 ◽  
Vol 323 ◽  
pp. 01009
Author(s):  
Damian Szczech ◽  
Renata Kotynia

This paper aims to investigate the shear failure mechanisms in beams reinforced with longitudinal and transverse glass fibre reinforced polymer bars. It is a part of comprehensive research on shear in concrete beams reinforced with steel and GFRP bars. The experimental program is composed of six real-scale single-span, simply-supported T-cross section concrete beams. The beams varied mainly with respect to the longitudinal reinforcement ratio (2.91% and 3.69%), bar diameter (25mm and 28mm, respectively) and transverse reinforcement ratio (0.16% and 0,33%). The paper presents test results, cracking patterns, failure modes and an analysis of the influence of variable parameters on the shear behaviour of elements.


Sign in / Sign up

Export Citation Format

Share Document