Shear Failure Analysis of Concrete Beams Reinforced with Newly Developed GFRP Stirrups

2006 ◽  
Vol 324-325 ◽  
pp. 995-998
Author(s):  
Cheol Woo Park ◽  
Jong Sung Sim

Even though the application of fiber reinforced polymer (FRP) as a concrete reinforcement becomes more common with various advantages, one of the inherent shortcomings may include its brittleness and on-site fabrication and handling. Therefore, the shape of FRP products has been limited only to a straight bar or sheet type. This study suggests a new technique to use glass fiber reinforced polymer (GFRP) bars for the shear reinforcement in concrete beams, and investigates its applicability. The developed GFRP stirrup was used in the concrete instead of ordinary steel stirrups. The experimental program herein evaluates the effectiveness of the GFRP stirrups with respect to different shear reinforcing ratios under three different shear span-to-depth testing schemes. At the same shear reinforcing ratio, the ultimate loads of the beams were similar regardless the shear reinforcing materials. Once a major crack occurs in concrete, however, the failure modes seemed to be relatively brittle with GFRP stirrups. From the measured strains on the surface of concrete, the shear stresses sustained by the stirrups were calculated and the efficiency of the GFRP stirrups was shown to be 91% to 106% depending on the shear span-to-depth ratio.

2015 ◽  
Vol 660 ◽  
pp. 198-201 ◽  
Author(s):  
Eva Partene ◽  
Valeriu Stoian ◽  
Andrei Bindean ◽  
Luminita Fekete-Nagy

The paper presents the behavior of masonry walls built up using ceramic blocks with hollows tested in bear state and then strengthened using FRP materials. A number of two masonry walls are subjected to cyclic in-plane horizontal loads and constant vertical loads, in order to determine the efficiency of the strengthening solutions compared with the shear resistance of the walls in bear state. Also, the experimental program is useful to observe the failure modes of the strengthened walls and also to determine if such strengthening solutions is earthquake-resistant.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lifeng Zhang ◽  
Hui Liu ◽  
Wenqiang Li ◽  
Hangjun Liu ◽  
Xuehui An ◽  
...  

The bonding behaviors of the plate-concrete interface of a composite structure consisting of a concrete block in the middle and two cement plates at both sides play a key role in its overall mechanical performance. In this paper, the authors conduct 3 groups of push-out shear tests on a total of 39 composite samples to assess the bonding performance. The influence of the FRP cement plates, the concrete strength, and the ribs installed in the cement plate on the interfacial shear strength, the relative bond-slip, strain, and the failure modes of the composite samples is recorded and analyzed. The results show that (1) the shear strength and bond-slip performance of the interface are largely improved if the GFRP/BRRP cement plates are used; (2) shear strength of the interface increases with the concrete strength, while the deformation behaviors show no significant improvement; (3) an inclusion of the ribs to the interface enhances the shear strength and shear stiffness but decreases the maximum relative slip at failure; (4) most of the samples present the shear failures along the interface; however, the bending shear failure prior to the interface shear failure is also observed on the concrete block for low concrete strength samples and the samples with ribs; and (5) regression method is used to develop a constitutive model of the stress-slip at the interface to describe the relationship between the shear strength with the cement plates, the concrete strength, and ribs.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 99 ◽  
Author(s):  
Chris G. Karayannis ◽  
Parthena-Maria K. Kosmidou ◽  
Constantin E. Chalioris

Innovative reinforcement as fiber-reinforced polymer (FRP) bars has been proposed as alternative for the substitution of the traditional steel bars in reinforced concrete (RC) structures. Although the advantages of this polymer reinforcement have long been recognised, the predominantly elastic response, the reduced bond capacity under repeated load and the low ductility of RC members with FRP bars restricted its wide application in construction so far. In this work, the behavior of seven slender concrete beams reinforced with carbon-FRP bars under increasing static loading is experimentally investigated. Load capacities, deflections, pre-cracking and after-cracking stiffness, sudden local drops of strength, failure modes, and cracking propagation have been presented and commented. Special attention has been given in the bond conditions of the anchorage lengths of the tensile carbon-FRP bars. The application of local confinement conditions along the anchorage lengths of the carbon-FRP bars in some specimens seems to influence their cracking behavior. Nevertheless, more research is required in this direction. Comparisons of experimental results for carbon-FRP beams with beams reinforced with glass-FRP bars extracted from recent literature are also presented and commented. Comparisons of the experimental results with the predictions according to ACI 440.1R-15 and to CSA S806-12 are also included herein.


2012 ◽  
Vol 204-208 ◽  
pp. 3009-3015
Author(s):  
Bing Hong Li ◽  
Shi Yong Jiang ◽  
Qian Hua Shi ◽  
Xian Qi Hu

The failure modes and the shear capacity of concrete beams reinforced with FRP reinforcement were discussed through an experimental investigation, in which continuous FRP rectangular spirals were used for shear reinforcement, while ordinary deformed steel bars are used for longitudinal reinforcement. Six concrete beams reinforced with FRP spirals were tested, the main variables considered were the shear reinforcement ratios, the shear span to depth ratios and the longitudinal reinforcement ratios. Two concrete beams of equal shear capacity which reinforced with continuous steel rectangular spirals were also tested to compare the behavior of concrete beams reinforced with different materials of spirals. All beams were tested as simply supported members subjected to a three-point load, the span of the beams varied in terms of different shear span to depth ratios. The test results show that the shear capacity and shear failure modes are greatly influenced by the shear reinforcement ratios and the shear span to depth ratios, the shear resistance provided by steel spirals is higher than that provided by FRP spirals in the case of equal shear capacity of beams, which is attributed to the differences in material properties and may result in different shear failure types. Based on the experimental program, four mechanical models are derived to give more accurate predictions of the shear capacity of test beams, the calculation results of these models are compared with that of the existing shear formulas or equations for concrete beams reinforced with FRP stirrups or spirals. The rotating-angle softened truss model, the strut-and-tie model, the shear formulas derived from the truss-arch model and Zsutty equations are suggested through comparison.


2021 ◽  
Vol 25 (Special) ◽  
pp. 4-135-4-149
Author(s):  
Oday H. Abbas ◽  
◽  
Hesham A.Numan ◽  

This study is devoted to inspect the flexural behavior of Geopolymer reinforced concrete beams with “large” web transverse opening and strengthened by three kinds of Fiber Reinforced Polymer materials. The implemented experimental program comprised casting eight beams under static and “one stage” repeated load, two of these are normal concrete beams and the others are Geopolymer beams. These beams are divided into two groups, the first comprised four beams of solid and beams “with transvers web opening” under static load for normal and Geopolymer concrete beams. The second group are of four Geopolymer beams that one of them is “un strengthened and having transvers web opening” while the others are also have transvers web opening but strengthened by different kinds of Fiber Reinforced Polymer materials sheets that installed vertically aligned and accompanied with the 90mm diameter large circular web opening. The strengthening materials included are Carbon Fiber Reinforced Polymer, Glass fiber Reinforced Polymer and Hybrid (one layer of Glass + one layer of Carbon) reinforced polymer sheets. The results showed that for the ultimate load capacity was decreased by 9.96% for holed normal concrete beam if compared with solid normal concrete solid beam while such capacity was decreased 2.25% and 11.89% for solid and holed Geopolymer beams respectively. In addition to that, the maximum load capacity is also decreased by 8.16%, 10.20% and 12.25% for Glass, Carbon and Hybrid fiber reinforced polymer strengthened beams if compared with reference beams “holed un strengthened beam” subjected to cyclic load.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Sign in / Sign up

Export Citation Format

Share Document